Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107804    DOI: 10.1088/1674-1056/24/10/107804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic structure calculation methods

Zhang Wen-Shuaia b, Gu Bing-Chuana b, Han Xiao-Xia b, Liu Jian-Danga b, Ye Bang-Jiaoa b
a Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
Abstract  

We make a gradient correction to a new local density approximation form of positron-electron correlation. The positron lifetimes and affinities are then probed by using these two approximation forms based on three electronic-structure calculation methods, including the full-potential linearized augmented plane wave (FLAPW) plus local orbitals approach, the atomic superposition (ATSUP) approach, and the projector augmented wave (PAW) approach. The differences between calculated lifetimes using the FLAPW and ATSUP methods are clearly interpreted in the view of positron and electron transfers. We further find that a well-implemented PAW method can give near-perfect agreement on both the positron lifetimes and affinities with the FLAPW method, and the competitiveness of the ATSUP method against the FLAPW/PAW method is reduced within the best calculations. By comparing with the experimental data, the new introduced gradient corrected correlation form is proved to be competitive for positron lifetime and affinity calculations.

Keywords:  positron annihilation      positron lifetime      electronic structure     
Received:  23 April 2015      Published:  05 October 2015
PACS:  78.70.Bj (Positron annihilation)  
  71.60.+z (Positron states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).

Corresponding Authors:  Ye Bang-Jiao     E-mail:  bjye@ustc.edu.cn

Cite this article: 

Zhang Wen-Shuai, Gu Bing-Chuan, Han Xiao-Xi, Liu Jian-Dang, Ye Bang-Jiao Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic structure calculation methods 2015 Chin. Phys. B 24 107804

[1] Tuomisto F and Makkonen I 2013 Rev. Mod. Phys. 85 1583
[2] Yuan D Q, Zheng Y N, Zuo Y, et al. 2014 Chin. Phys. Lett. 31 046101
[3] Li Y F, Shen T L, Gao X, et al. 2014 Chin. Phys. Lett. 31 036101
[4] Makkonen I, Ervasti M M, Siro T and Harju A 2014 Phys. Rev. B 89 041105
[5] Nieminen R M, Boroński E and Lantto L J 1985 Phys. Rev. B 32 1377
[6] Puska M J, Seitsonen A P and Nieminen R M 1995 Phys. Rev. B 52 10947
[7] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[8] Kuriplach J and Barbiellini B 2014 Phys. Rev. B 89 155111
[9] Kuriplach J and Barbiellini B 2014 J. Phys.: Conf. Ser. 505 012040
[10] Zhang W, Gu B, Liu J and Ye B 2015 Comput. Mater. Sci. 105 32
[11] Drummond N D, López Ríos P, Needs R J and Pickard C J 2011 Phys. Rev. Lett. 107 207402
[12] Drummond N D, López Ríos P, Pickard C J and Needs R J 2010 Phys. Rev. B 82 035107
[13] Sjöstedt E, Nordström L and Singh D J 2000 Solid State Commun. 114 15
[14] Blöchl P E 1994 Phys. Rev. B 50 17953
[15] Puska M J and Nieminen R M 1983 J. Phys. F: Met. Phys. 13 333
[16] Wiktor J, Kerbiriou X, Jomard G, Esnouf S, Barthe M F and Bertolus M 2014 Phys. Rev. B 89 155203
[17] Wiktor J, Barthe M F, Jomard G, Torrent M, Freyss M and Bertolus M 2014 Phys. Rev. B 90 184101
[18] Makkonen I, Hakala M and Puska M J 2006 Phys. Rev. B 73 035103
[19] Rauch C, Makkonen I and Tuomisto F 2011 Phys. Rev. B 84 125201
[20] Huang S J, Zhang W S, Liu J D, Zhang J, Li J and Ye B J 2014 Acta Phys. Sin 63 217804 (in Chinese)
[21] Boroński E and Nieminen R M 1986 Phys. Rev. B 34 3820
[22] Jensen K O 1989 J. Phys.: Condens. Matter 1 10595
[23] Stachowiak H and Lach J 1993 Phys. Rev. B 48 9828
[24] Boroński E 2010 Nukleonika 55 9
[25] Boroński E and Stachowiak H 1998 Phys. Rev. B 57 6215
[26] Barbiellini B, Puska M J, Torsti T and Nieminen R M 1995 Phys. Rev. B 51 7341
[27] Barbiellini B, Puska M J, Korhonen T, Harju A, Torsti T and Nieminen R M 1996 Phys. Rev. B 53 16201
[28] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria, 2001
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[31] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[32] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[33] Corso A D 2014 Comput. Mater. Sci. 95 337
[34] Campillo Robles J M and Plazaola F 2003 Defect Diffus. Forum 213-215 141
[35] Seeger A, Barnhart F and W B 1989 in Positron Annihilation, eds. Dorikens-Vanpraet L, Dorikens M and Segers D (Singapore: World Scientific) p. 275s; see also Sterne P A, Kaiser J H 1991 Phys. Rev. B 43 13892; and Jensen K O 1989 J. Phys.: Condens. Matter 1 10595
[36] Welch D O and Lynn K G 1976 Phys. Status Solidi B 77 277
[37] Wang Z, Wang S J, Chen Z Q, Ma L and Li S 2000 Phys. Stat. Sol. 177 341
[38] Saarinen K, Hautojärvi P, Lanki P and Corbel C 1991 Phys. Rev. B 44 10585
[39] Polity A, Rudolf F, Nagel C, Eichler S and Krause-Rehberg R 1997 Phys. Rev. B 55 10467
[40] Dlubek G, Krause R, Brümmer O and Tittes J 1987 Appl. Phys. A: Solids Surf. 42 125
[41] Dannefaer S, Hogg B and Kerr D 1984 Phys. Rev. B 30 3355
[42] Beling C D, Deng A H, Shan Y Y, Zhao Y W, Fung S, Sun N F, Sun T N and Chen X D 1998 Phys. Rev. B 58 13648
[43] Chen Z Q, Hu X W and Wang S J 1998 Appl. Phys. A: Solids Surf. 66 435
[44] Puska M J, Mäkinen S, Manninen M and Nieminen R M 1989 Phys. Rev. B 39 7666
[45] Dlubek G and Brümmer O 1986 Ann. Phys. (Leipzig) 7 178
[46] Dlubek G, Brümmer O, Plazaola F, Hautojärvi P and Naukkarinen K 1985 Appl. Phys. Lett. 46 1136
[47] Mizuno M, Araki H and Shirai Y 2004 Mater. Trans. 45 1964
[48] Brauer G, Anwand W, Skorupa W, Kuriplach J, Melikhova O, Moisson C, Wenckstern H, Schmidt H, Lorenz M and Grundmann M 2006 Phys. Rev. B 74 045208
[49] Uedono A, Koida T, Tsukazaki A, Kawasaki M, Chen Z Q, Chichibu S and Koinuma H 2003 J. Appl. Phys. 93 2481
[50] Brunner S, Puff W, Balogh A G and Mascher P 2001 Mater. Sci. Forum 363-365 141
[51] Tuomisto F, Ranki V, Saarinen K and Look D C 2003 Phys. Rev. Lett. 91 205502
[52] Plazaola F, Seitsonen A P and Puska M J 1994 J. Phys.: Condens. Matter 6 8809
[53] Gély-Sykes C, Corbel C and Triboulet R 1993 Solid State Commun. 80 79
[54] Peng Z L, Simpson P J and Maschera P 2000 Electrochem. Solid-State Lett. 3 150
[55] Geffroy B, Corbel C, Stucky M, Triboulet R, Hautojärvi P, Plazaola F L, Saarinen K, Rajainmäki H, Aaltonen J, Moser P, Sengupta A and Pautrat J L ewblock 1986 Defects in Semiconductors, ed. H. J. von Bardeleben, Materials Science Forum (Aedermannsdorff: Trans. Tech. Publications) Vol. 10-12, p. 1241
[56] Dannefaer S 1982 J. Phys. C 15 599
[57] Campillo Robles J M, Ogando E and Plazaola F 2007 J. Phys.: Condes. Matter 19 176222
[58] Tang Z, Hasegawa M, Nagai Y, Saito M and Kawazoe Y 2002 Phys. Rev. B 65 045108
[1] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[2] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[3] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[4] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[5] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[6] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[7] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[8] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[9] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[10] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS\plink
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[11] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[12] Electronic structure of single-crystalline graphene grown on Cu/Ni (111) alloy film
Xue-Fu Zhang(张学富), Zhong-Hao Liu(刘中灏), Wan-Ling Liu(刘万领), Xiang-Le Lu(卢祥乐), Zhuo-Jun Li(李卓君), Qing-Kai Yu(于庆凯), Da-Wei Shen(沈大伟), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2019, 28(8): 086103.
[13] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[14] Electronic structure from equivalent differential equations of Hartree-Fock equations
Hai Lin(林海). Chin. Phys. B, 2019, 28(8): 087101.
[15] Topology of triple-point metals
Georg W. Winkler, Sobhit Singh, Alexey A. Soluyanov. Chin. Phys. B, 2019, 28(7): 077303.
No Suggested Reading articles found!