Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 083201    DOI: 10.1088/1674-1056/23/8/083201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Semi-classical explanation for the dissociation control of H2+

Jia Zheng-Mao (贾正茂), Zeng Zhi-Nan (曾志男), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展)
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  A semi-classical model is utilized to explain the dissociation control of the hydrogen molecular ion (H2+). By analyzing the curve of the dissociation asymmetry parameter as a function of the time delay between the exciting and steering pulses, we find that the dissociation control is dependent not only on the peak intensity and direction of the electric field of the steering pulse, but also on the peak intensity of the exciting pulse.
Keywords:  dissociation probability      hydrogen molecular ion      terahertz pulse      time-dependent Schrödinger equation  
Received:  08 November 2013      Revised:  18 February 2014      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11127901, 60921004, 11134010, 11222439, 11227902, and 61108012) and the National Key Basic Research Program of China (Grant No. 2011CB808103).
Corresponding Authors:  Zeng Zhi-Nan     E-mail:  zhinan_zeng@mail.siom.ac.cn

Cite this article: 

Jia Zheng-Mao (贾正茂), Zeng Zhi-Nan (曾志男), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展) Semi-classical explanation for the dissociation control of H2+ 2014 Chin. Phys. B 23 083201

[1] Brixner T and Gerber G 2003 Chem. Phys. Chem. 4 418
[2] Lan P, Lu P, Cao W, Li Y and Wang X 2007 Phys. Rev. A 76 011402
[3] González Castrillo A, Palacios A, Bachau H and Martín F 2012 Phys. Rev. Lett. 108 063009
[4] Zewail A H 2000 J. Phys. Chem. A 104 5660
[5] Babrec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[6] Lindner F, Schätzel M G, Walther H, Baltuška A, Goulielmakis E, Krausz F, Milošević D B, Bauer D, Becker W and Paulus G G 2005 Phys. Rev. Lett. 95 040401
[7] Roudnev V, Esry B D and Ben Itzhak I 2004 Phys. Rev. Lett. 93 163601
[8] Kling M F, Siedschlag Ch, Verhoef A J, Khan J I, Schultze M, Uphues Th, Ni Y, Uiberacker M, Drescher M, Krausz F and Vrakking M J J 2006 Science 312 246
[9] Chelkowski S, Yudin G L and Bandrauk A D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S409
[10] Znakovskaya I, von den Hoff P, Marcus G, Zherebtsov S, Bergues B, Gu X, Deng Y, Vrakking M J J, Kienberger R, Krausz F, de Vivie-Riedle R and Kling M F 2012 Phys. Rev. Lett. 108 063002
[11] Geppert D, vonden Hoff P and de Vivie-Riedle R 2008 J. Phys. B: At. Mol. Opt. Phys. 41 074006
[12] Roudnev V and Esry B D 2007 Phys. Rev. Lett. 99 220406
[13] McKenna J, Anis F, Sayler A M, Gaire B, Nora G Johnson, Parke E, Esry K D, Carnes B D and Ben Itzhak I 2012 Phys. Rev. A 85 023405
[14] Fischer Bettina, Kremer Manuel, Pfeifer Thomas, Feuerstein Bernold, Vandana Sharma, Uwe Thumm, Claus Dieter Schröter, Robert Moshammer and Joachim Ullrich1 2010 Phys. Rev. Lett. 105 223001
[15] He F 2012 Phys. Rev. A 86 063415
[16] Kling M F, Siedschlag Ch, Znakovskaya I, Verhoef A J, Zherebtsov S, Krausz F, Lezius M and Vrakking M J J 2008 Mol. Phys. 106 455
[17] Hirori H, Doi A, Blanchard F and Tanaka K 2011 Appl. Phys. Lett. 98 091106
[18] Alexander Sell, Alfred Leitenstorfer and Rupert Huber 2008 Opt. Lett. 33 2767
[19] Christoph P Hauri, Clemens Ruchert, Carlo Vicario and Fernando Ardana 2011 Appl. Phys. Lett. 99 161116
[20] Xie X, Dai J M and Zhang X C 2006 Phys. Rev. Lett. 96 075005
[21] Bai Y, Song L W, Xu R J, Li C, Peng L, Zeng Z N, Zhang Z X, Lu H H, Li R X and Xu Z Z 2012 Phys. Rev. Lett. 108 255004
[22] Wu J, Tong Y Q, Li M, Pan H F and Zeng H P 2010 Phys. Rev. A 82 053416
[23] Jia Z G, Zeng Z N, Li R X, Xu Z Z and Deng Y P Phys. Rev. A 89 023419
[24] Zheng Y H, Zeng Z N, Li R X and Xu Z Z 2012 Phys. Rev. A 85 023410
[25] Chelkowski Szczepan, André D Bandrauk, André Staudte and Corkum Paul B 2007 Phys. Rev. A 76 013405
[26] Wang Y S and Xu Z Z 2000 Chin. Phys. Lett. 17 491
[27] Chen C Z, Zhou X X and Cao W J 2011 Acta Phys. Sin. 60 054210 (in Chinese)
[28] Chen J G, Yu X P, He L J, Xu Y Y and Yang Y J 2011 Acta Phys. Sin. 60 053206 (in Chinese)
[29] Zeng Z N, Li R X, Yu W and Xu Z Z 2002 Chin. Phys. Lett. 19 1112
[30] Zeng Z N, Li R X, Yu W and Xu Z Z 2003 Phys. Rev. A 67 013815
[31] Liu K L, Hong W Y, Zhang Q B and Lu P X 2011 Opt. Express 19 26359
[32] He F, Ruiz Camilo and Becker Andreas 2007 Phys. Rev. Lett. 99 083002
[33] Fleischer Sharly, Zhou Y, Robert W Field and Nelson Keith A 2011 Phys. Rev. Lett. 107 163603
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Dynamics of molecular alignment steered by a few-cycle terahertz laser pulse
Qi-Yuan Cheng(程起元), Yu-Zhi Song(宋玉志), Deng-Wang Li(李登旺), Zhi-Ping Liu(刘治平), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2022, 31(10): 103301.
[3] Tunneling exits of H2+ in strong laser fields
Zhao-Han Zhang(张兆涵), Feng He(何峰). Chin. Phys. B, 2018, 27(10): 104203.
[4] High-precision spectroscopy of hydrogen molecular ions
Zhong Zhen-Xiang (钟振祥), Tong Xin (童昕), Yan Zong-Chao (严宗朝), Shi Ting-Yun (史庭云). Chin. Phys. B, 2015, 24(5): 053102.
[5] Influence of a strong magnetic field on the hydrogen molecular ion using B-spline-type basis-sets
Zhang Yue-Xia (张月霞), Zhang Xiao-Long (张小龙). Chin. Phys. B, 2015, 24(12): 123101.
[6] Deflections of photoelectron classical trajectories in screened Coulomb potentials of H2+
Qin Bo-Ya (秦博雅), Wang Pei-Jie (王培杰), He Feng (何峰). Chin. Phys. B, 2015, 24(11): 114208.
[7] Control of electron localization in the dissociation of H2+ and its isotopes with a THz pulse
Jia Zheng-Mao (贾正茂), Zeng Zhi-Nan (曾志男), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展), Deng Yun-Pei (邓蕴沛). Chin. Phys. B, 2015, 24(1): 013204.
[8] Detection of the spatiotemporal field of a single-shot terahertz pulse based on spectral holography
Wang Xiao-Lei (王晓雷), Fei Yang (费扬), Li Lu-Jie (李璐杰), Wang Qiang (王强), Zhu Zhu-Qing (朱竹青). Chin. Phys. B, 2014, 23(6): 064202.
[9] High-power terahertz pulse sensor with overmoded structure
Wang Xue-Feng (王雪锋), Wang Jian-Guo (王建国), Wang Guang-Qiang (王光强), Li Shuang (李爽), Xiong Zheng-Feng (熊正锋). Chin. Phys. B, 2014, 23(5): 058701.
[10] Scattering and propagation of terahertz pulses in random soot aggregate systems
Li Hai-Ying (李海英), Wu Zhen-Sen (吴振森), Bai Lu (白璐), Li Zheng-Jun (李正军). Chin. Phys. B, 2014, 23(5): 054201.
[11] High power terahertz pulses generated in intense laser-plasma interactions
Li Yu-Tong (李玉同), Wang Wei-Min (王伟民), Li Chun (李春), Sheng Zheng-Ming (盛政明). Chin. Phys. B, 2012, 21(9): 095203.
[12] DYNAMICS of H+2 in TWO-COLOR ULTRASHORT LASER PULSE
Chen Zhao-yang (陈朝阳), Qu Wei-xing (屈卫星), Xu Zhi-zhan (徐至展). Chin. Phys. B, 2000, 9(8): 577-580.
No Suggested Reading articles found!