Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 080501    DOI: 10.1088/1674-1056/23/8/080501
GENERAL Prev   Next  

Control of fractional chaotic and hyperchaotic systems based on a fractional order controller

Li Tian-Zenga b, Wang Yua b, Luo Mao-Kanga
a College of Mathematics, Sichuan University, Chengdu 610065, China;
b Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing, School of Science, Sichuan University of Science and Engineering, Zigong 643000, China
Abstract  We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.
Keywords:  fractional-order chaotic system      chaos control      fractional-order controller      hyperchaos  
Received:  21 October 2013      Revised:  23 January 2014      Published:  15 August 2014
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11171238), the Science Found of Sichuan University of Science and Engineering (Grant Nos. 2012PY17 and 2014PY06), the Fund from Artificial Intelligence Key Laboratory of Sichuan Province (Grant No. 2014RYJ05), and the Opening Project of Sichuan Province University Key Laborstory of Bridge Non-destruction Detecting and Engineering Computing (Grant No. 2013QYJ01).
Corresponding Authors:  Luo Mao-Kang     E-mail:  makaluo@scu.edu.cn

Cite this article: 

Li Tian-Zeng, Wang Yu, Luo Mao-Kang Control of fractional chaotic and hyperchaotic systems based on a fractional order controller 2014 Chin. Phys. B 23 080501

[1] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[2] Petras I 2011 Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation (Beijing: Higher Education Press)
[3] Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 034101
[4] Liu C X and Liu L 2009 Chin. Phys. B 18 2188
[5] Li C G and Chen G R 2004 Chaos, Solitons and Fractals 22 549
[6] Yang N N, Liu C X and Wu C J 2010 Chin. Phys. B 19 100502
[7] Ge Z M and Jhuang W R 2007 Chaos, Solitons and Fractals 33 270
[8] Zhong Q S 2008 Chin. Phys. Lett. 25 2812
[9] Huang L L and He S J 2011 Acta Phys. Sin. 60 044703 (in Chinese)
[10] Li Y X, Tang W K S and Chen G R 2005 Int. J. Bifur. Chaos 15 3367
[11] Wang X Y and Wang M J 2008 Physica A 387 3751
[12] Wang Z, Huang X, Li Y X and Song X N 2013 Chin. Phys. B 22 010504
[13] Rössler O E 1979 Phys. Lett. A 71 155
[14] Li F, Wang C N and Ma J 2013 Chin. Phys. B 22 10052
[15] Ahmad W M, El-Khazali R and Al-Assaf Y 2004 Chaos, Solitons and Fractals 22 141
[16] Zhang R X and Yang S P 2009 Acta Phys. Sin. 58 2957 (in Chinese)
[17] Li C G and Chen G R 2004 Chaos, Solitons and Fractals 22 549
[18] Zhu C X 2010 Appl. Math. Comput. 216 3126
[19] Wang X Y and Song J M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3351
[20] Zheng S, Dong G G and Bi Q S 2010 Appl. Math. Comput. 215 3192
[21] Yu S M, Lü J H, Yu X H and Chen G R 2012 IEEE Trans. Circ. Sys. I 59 1015
[22] Lurie B J 1994 (U.S. Patent.) 5 371 670 [1994-12-06]
[23] Podlubny I 1999 IEEE Trans. Automat. Control 44 208
[24] Oustaloup A, Sabatier J and Lanusse P 1999 Fractional Calculus Appl. Anal. 2 1
[25] Tavazoei M S and Haeri M 2007 Phys. Lett. A 367 102
[26] Lü J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659
[27] Wang X J, Li J and Chen G R 2008 J. Franklin Inst. 345 392
[28] Liu C, Liu L and Liu T 2009 Chaos, Solitons and Fractals 39 1950
[29] Gejji V D and Ou C Y 2007 Chaos, Solitions and Fractals 34 262
[30] Wang X Y and Wang M J 2008 Physica A 387 3751
[31] Wang X Y and Song J M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3351
[32] Lü J H and Chen G R 2006 Int. J. Bifur. Chaos 16 775
[33] Chen Y, Lü J H and Lin Z L 2013 Automatica 49 1768
[34] Chen Y, Lü J H and Lin Z L 2013 SIAM J. Control Optim. 51 3274
[35] Tan S L, Lü J H, Yu X H and Hill D J 2013 Chin. Sci. Bull. 58 3491
[36] Cao Y C, Li Y, Ren W and Chen Y Q 2010 IEEE Trans. Sys. Man, Cyb. Part B: Cybernetics 40 362
[1] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[2] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[3] Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor
En-Zeng Dong(董恩增), Zhen Wang(王震), Xiao Yu(于晓), Zeng-Qiang Chen(陈增强), Zeng-Hui Wang(王增会). Chin. Phys. B, 2018, 27(1): 010503.
[4] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[5] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng, Li Sheng-Gang, Sun Ye-Guo, Wang Hong-Xing. Chin. Phys. B, 2015, 24(9): 090505.
[6] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke, Wang Zhi-Hui, Gao Li-Ke, Sun Yue, Ma Tie-Dong. Chin. Phys. B, 2015, 24(3): 030504.
[7] Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity
Yin Jiu-Li, Zhao Liu-Wei, Tian Li-Xin. Chin. Phys. B, 2014, 23(2): 020204.
[8] The dynamics of a symmetric coupling of three modified quadratic maps
Paulo C. Rech. Chin. Phys. B, 2013, 22(8): 080202.
[9] Complex dynamical behavior and chaos control for fractional-order Lorenz-like system
Li Rui-Hong, Chen Wei-Sheng. Chin. Phys. B, 2013, 22(4): 040503.
[10] Synchronization of uncertain fractional-order chaotic systems with disturbance based on fractional terminal sliding mode controller
Wang Dong-Feng, Zhang Jin-Ying, Wang Xiao-Yan. Chin. Phys. B, 2013, 22(4): 040507.
[11] Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance
Wang Dong-Feng, Zhang Jin-Ying, Wang Xiao-Yan. Chin. Phys. B, 2013, 22(10): 100504.
[12] Chaos detection and control in a typical power system
Hossein Gholizadeh, Amir Hassannia, Azita Azarfar. Chin. Phys. B, 2013, 22(1): 010503.
[13] Control of fractional chaotic system based on fractional-order resistor–capacitor filter
Zhang Lu, Deng Ke, Luo Mao-Kang. Chin. Phys. B, 2012, 21(9): 090505.
[14] A single adaptive controller with one variable for synchronization of fractional-order chaotic systems
Zhang Ruo-Xun, Yang Shi-Ping. Chin. Phys. B, 2012, 21(8): 080505.
[15] Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems
Zhang Ruo-Xun,Yang Shi-Ping. Chin. Phys. B, 2012, 21(3): 030505.
No Suggested Reading articles found!