Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070203    DOI: 10.1088/1674-1056/23/7/070203
GENERAL Prev   Next  

Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations

Wang Xin, Chen Yong
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China
Abstract  Novel explicit rogue wave solutions of the coupled Hirota equations are obtained by using the Darboux transformation. In contrast to the fundamental Peregrine solitons and dark rogue waves, we present an interesting rogue-wave pair that involves four zero-amplitude holes for the coupled Hirota equations. It is significant that the corresponding expressions of the rogue-wave pair solutions contain polynomials of the fourth order rather than the second order. Moreover, dark-bright-rogue wave solutions of the coupled Hirota equations are given, and interactions between Peregrine solitons and dark-bright solitons are analyzed. The results further reveal the dynamical properties of rogue waves for the coupled Hirota equations.
Keywords:  rogue-wave pair      dark-bright-rogue wave      coupled Hirota equations      Darboux transformation     
Received:  05 December 2013      Published:  15 July 2014
PACS:  02.30.Ik (Integrable systems)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  02.30.Hq (Ordinary differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11275072), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120076110024), the Innovative Research Team Program of the National Natural Science Foundation of China (Grant No. 61321064), the Talent Fund and K.C. Wong Magna Fund in Ningbo University, China, and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ13A010014).
Corresponding Authors:  Chen Yong     E-mail:  ychen@sei.ecnu.edu.cn
About author:  02.30.IK; 03.75.Nt; 02.30.Hq

Cite this article: 

Wang Xin, Chen Yong Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations 2014 Chin. Phys. B 23 070203

[1] Peregrine D H and Austral J 1983 Math. Soc. B: Appl. Math. 25 16
[2] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[3] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[4] Bludov Y V, Konotop V V and Akhmediev N 2010 Eur. Phys. J. Spec. Top. 185 169
[5] Xu S W and He J S 2011 J. Phys. A 44 305203
[6] Guo B L, Ling L M and Liu Q P 2013 Stud. Appl. Math. 130 317
[7] Ankiewicz A, Akhmediev N and Soto-Crespo J M 2010 Phys. Rev. E 82 026602
[8] Chen S H 2013 Phys. Rev. E 88 023202
[9] Tao Y S and He J S 2012 Phys. Rev. E 85 026601
[10] Yan Z Y 2010 Phys. Lett. A 374 672
[11] Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
[12] Zhao L C and Liu J 2013 Phys. Rev. E 87 013201
[13] Baronio F 2013 arXiv:1304.4402
[14] Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[15] Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
[16] Tasgal R S and Potasek M J 1992 J. Math. Phys. 33 1208
[17] Bindu S G, Mahalingam A and Porsezian K 2001 Phys. Lett. A 286 321
[18] Porsezian K and Nakkeeran K 1997 Pure Appl. Opt. 6 L7
[19] Chen S H and Song L Y 2013 Phys. Rev. E 87 032910
[20] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[21] Hu X B and Tam H W 2000 Phys. Lett. A 276 65
[22] Hu X B and Zhu Z N 1998 J. Math. Phys. 39 4766
[23] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer)
[24] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer)
[25] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[26] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[27] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[28] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A 45 155209
[29] Zhang D J and Chen S T 2010 Stud. Appl. Math. 125 393
[30] Wang X, Chen Y and Dong Z Z 2014 Chin. Phys. B 23 010201
[31] Ma H C and Lou S Y 2005 Chin. Phys. 14 1495
[32] Chen Y and Dong Z Z 2009 Nonlinear Anal. 71 e810
[33] Chen L L, Lou S Y and Lian Z J 2005 Chin. Phys. 14 1486
[34] Fan E G 2000 Phys. Lett. A 277 212
[35] Yan Z Y 2001 Phys. Lett. A 292 100
[36] Chen Y and Fan E G 2007 Chin. Phys. 16 6
[37] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry (New York: Springer)
[38] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[39] Geng X G and Tam H W 1999 J. Phys. Soc. Jpn. 68 1508
[40] Guo B L, Ling L M and Liu Q P 2012 Phys. Rev. E 85 026607
[41] Xue B and Wang X 2012 Chin. Phys. Lett. 29 100201
[42] Fan E G 2000 J. Math. Phys. 41 7769
[43] Fan E G 2000 J. Phys. A 33 6925
[44] Wang X and Chen Y 2014 Commun. Theor. Phys. 61 423
[1] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schr\"odinger equation
Mi Chen(陈觅) and Zhen Wang(王振)†. Chin. Phys. B, 2020, 29(12): 120201.
[2] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), Biao Li(李彪). Chin. Phys. B, 2020, 29(10): 100501.
[3] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[4] Localized waves in three-component coupled nonlinear Schrödinger equation
Tao Xu(徐涛), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(9): 090201.
[5] Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C)
Wang Xin-Zeng, Dong Huan-He. Chin. Phys. B, 2015, 24(8): 080201.
[6] Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation
Tao Yong-Sheng, He Jing-Song, K. Porsezian. Chin. Phys. B, 2013, 22(7): 074210.
[7] N-soliton solutions of an integrable equation studied by Qiao
Zhaqilao. Chin. Phys. B, 2013, 22(4): 040201.
[8] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing, Liu Jin-Yuan. Chin. Phys. B, 2012, 21(9): 090202.
[9] Explicit solutions of Boussinesq--Burgers equation
Chen Ai-Hua, Wang Zheng-Yan. Chin. Phys. B, 2007, 16(5): 1233-1238.
[10] A hierarchy of lattice soliton equations and its Darboux transformation
Ding Hai-Yong, Xu Xi-Xiang, Zhao Xiang-Dong. Chin. Phys. B, 2004, 13(2): 125-131.
No Suggested Reading articles found!