Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070201    DOI: 10.1088/1674-1056/23/7/070201
GENERAL   Next  

Symmetries and variational calculationof discrete Hamiltonian systems

Xia Li-Lia b, Chen Li-Qunb c d, Fu Jing-Lie, Wu Jing-Hea
a Department of Physics, Henan Institute of Education, Zhengzhou 450046, China;
b Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
c Department of Mechanics, Shanghai University, Shanghai 200444, China;
d Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, China;
e Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  We present a numerical simulation method of Noether and Lie symmetries for discrete Hamiltonian systems. The Noether and Lie symmetries for the systems are proposed by investigating the invariance properties of discrete Lagrangian in phase space. The numerical calculations of a two-degree-of-freedom nonlinear harmonic oscillator show that the difference discrete variational method preserves the exactness and the invariant quantity.
Keywords:  discrete Hamiltonian systems      discrete variational integrators      symmetry      conserved quantity     
Received:  17 October 2013      Published:  15 July 2014
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.20.Qs (General properties, structure, and representation of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the Key Program of National Natural Science Foundation of China (Grant No. 11232009), the National Natural Science Foundation of China (Grant Nos. 11072218, 11272287, and 11102060), the Shanghai Leading Academic Discipline Project, China (Grant No. S30106), the Natural Science Foundation of Henan Province, China (Grant No. 132300410051), and the Educational Commission of Henan Province, China (Grant No. 13A140224).
Corresponding Authors:  Chen Li-Qun     E-mail:
About author:  02.20.Sv; 02.20.Qs; 11.30.-j; 45.20.Jj

Cite this article: 

Xia Li-Li, Chen Li-Qun, Fu Jing-Li, Wu Jing-He Symmetries and variational calculationof discrete Hamiltonian systems 2014 Chin. Phys. B 23 070201

[1] Noether A E 1918 Math. Phys. KI. 2 235
[2] Djukic D D S and Vujanovic B D 1975 Acta Mech. 23 17
[3] Sarlet W and Cantrijn F 1981 SIAM Rev. 23 467
[4] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[5] Lutzky M 1979 Phys. Lett. A 72 86
[6] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[7] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[8] Mei F X, Xu X J and Zhang Y F 2004 Acta Mech. Sin. 20 668
[9] Dorodnitsyn V 2011 Applications of Lie Groups to Difference Equations (Boca Raton, FL: Chapman & Hall/CRC)
[10] Logan J D 1973 Aequat. Math. 9 210
[11] Dorodnitsyn V 2001 Appl. Numer. Math. 39 307
[12] Dorodnitsyn V and Kozlov R 2009 J. Phys. A: Math. Theor. 42 454007
[13] Fu J L, Dai G D, Salvador J and Tang Y F 2007 Chin. Phys. 16 570
[14] Levi D, Tremblay S and Winternitz P 2000 J. Phys. A: Math. Gen. 33 8507
[15] Xia L L and Chen L Q 2012 Nonlinear Dyn. 70 1223
[16] Grinspun E, Desbrun M, Polthier K, Schröder P and Stern A 2006 Discrete Differential Geometry: An Applied Introduction – The 33rd International Conference and Exhibition on Computer Graphics and Interactive Techniques, July 30-August 3, 2006 Boston, USA, (ACM SIGGRAPH 2006 Course 1)
[17] Cadzow J A 1970 Int. J. Control 11 393
[18] Wendlandt J M and Marsden J E 1997 Physica D: Nonlinear Phenomena 106 223
[19] Marsden J E, Patrick G W and Shkoller S 1998 Commun. Math. Phys. 199 351
[20] Kane C, Marsden J E and Ortiz M 1999 J. Math. Phys. 40 3353
[21] Cortés J and Martínez S 2001 Nonlinearity 14 1365
[22] Guo H Y, Wu K, Wang S H, Wang S K and Wei J M 2000 Commun. Theor. Phys. 34 307
[23] Guo H Y, Li Y Q and Wu K 2001 Commun. Theor. Phys. 35 703
[24] Chen J B, Guo H Y and Wu K 2003 J. Math. Phys. 44 1688
[25] McLachlan R and Perlmutter M 2006 J. Nonlinear Sci. 16 283
[26] Guo H Y and Wu K 2003 J. Math. Phys. 44 5978
[27] Liu S X, Liu C and Guo Y X 2011 Chin. Phys. B 20 034501
[28] Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 1063
[29] Kane C, Marsden J E, Ortiz M and West M 1999 Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems (Ph.D. dissertation) (California: Caltech)
[30] Maeda S 1980 Math. Japonica 25 405
[31] Levi D and Winternitz P 1991 Phys. Lett. A 152 335
[32] Dorodnitsyn V and Winternitz P 2000 Nonlinear Dyn. 22 49
[33] Bahar L Y and Kwatny H G 1987 Int. J. Nonlinear Mech. 22 125
[34] Miller K S 1968 The American Mathematical Monthly 75 630
[35] Marsden J E and West M 2001 Acta Numerica 10 357
[36] Hairer E, Lubich C and Wanner G 2003 Acta Numerica 12 399
[1] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[2] Solid angle car following model
Dongfang Ma(马东方), Yueyi Han(韩月一), Sheng Jin(金盛). Chin. Phys. B, 2020, 29(6): 060504.
[3] Three-Airy autofocusing beams
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅). Chin. Phys. B, 2020, 29(6): 064204.
[4] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[5] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[6] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[7] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
[8] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[9] Linear optical approach to supersymmetric dynamics
Yong-Tao Zhan(詹颙涛), Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Wei-Wei Pan(潘维韦), Munsif Jan, Fu-Ming Chang(常弗鸣), Kai Sun(孙凯), Jin-Shi Xu(许金时), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(1): 014209.
[10] Specific heat in superconductors
Hai-Hu Wen(闻海虎). Chin. Phys. B, 2020, 29(1): 017401.
[11] Atomic even-harmonic generation due to symmetry-breaking effects induced by spatially inhomogeneous field
Yue Guo(郭月), Aihua Liu(刘爱华), Jun Wang(王俊), Xueshen Liu(刘学深). Chin. Phys. B, 2019, 28(9): 094212.
[12] Local evolutions of nodal points in two-dimensional systems with chiral symmetry
Peiyuan Fu(符培源), Zhesen Yang(杨哲森), Jiangping Hu(胡江平). Chin. Phys. B, 2019, 28(7): 077101.
[13] Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice
Xingchuan Zhu(朱兴川), Tao Ying(应涛), Huaiming Guo(郭怀明), Shiping Feng(冯世平). Chin. Phys. B, 2019, 28(7): 077401.
[14] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[15] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
No Suggested Reading articles found!