Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067305    DOI: 10.1088/1674-1056/23/6/067305

Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons

Zhao Shang-Qiana, Lü Yana, Lü Wen-Ganga, Liang Wen-Jiea, Wang En-Geb
a Institute of Physics, Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
b International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
Abstract  We present a study of electronic properties of zigzag graphene nanoribbons (ZGNRs) substitutionally doped with nitrogen atoms at a single edge by first principle calculations. We find that the two edge states near the Fermi level separate due to the asymmetric nitrogen-doping. The ground states of these systems become ferromagnetic because the local magnetic moments along the undoped edges remain and those along the doped edges are suppressed. By controlling the charge-doping level, the magnetic moments of the whole ribbons are modulated. Proper charge doping leads to interesting half-metallic and single-edge conducting ribbons which would be helpful for designing graphene-nanoribbon-based spintronic devices in the future.
Keywords:  graphene nanoribbons      charge doping      spin-polarization      spatial localization     
Received:  23 December 2013      Published:  15 June 2014
PACS:  73.22.Pr (Electronic structure of graphene)  
  75.75.-c (Magnetic properties of nanostructures)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10834012 and 11374342), National Key Basic Research and Development Program of China (Grant No. 2009CB930700), and the Knowledge Innovation Foundation of the Chinese Academy of Sciences (Grant No. KJCX2-YW-W35).
Corresponding Authors:  Lü Wen-Gang     E-mail:

Cite this article: 

Zhao Shang-Qian, Lü Yan, Lü Wen-Gang, Liang Wen-Jie, Wang En-Ge Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons 2014 Chin. Phys. B 23 067305

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Terrones H, Lü R, Terrones M and Dresselhaus M S 2012 Rep. Prog. Phys. 75 062501
[5] Abergel D S L, Apalkov V, Berashevich J, Ziegler K and Chakraborty T 2010 Adv. Phys. 59 261
[6] Yazyev O V 2010 Rep. Prog. Phys. 73 056501
[7] Andrei E Y, Li G H and Du X 2012 Rep. Prog. Phys. 75 056501
[8] Han M Y, Özyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805
[9] Li X L, Wang X R, Zhang L, Lee S and Dai H J 2008 Science 319 1229
[10] Wang X R, Ouyang Y J, Li X L, Wang H L, Guo J and Dai H J 2008 Phys. Rev. Lett. 100 206803
[11] Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G and Zhang G Y 2011 Adv. Mater. 23 3061
[12] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[13] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[14] Wimmer M, Adagideli İ, Berber S, Tománek D and Richter K 2008 Phys. Rev. Lett. 100 177207
[15] Wang B, Wang J and Guo H 2009 Phys. Rev. B 79 165417
[16] Wang X R, Li X L, Zhang L, Yoon Y K, Weber P K, Wang H L, Guo J and Dai H J 2009 Science 324 768
[17] Biel B, Blase X, Triozon F and Roche S 2009 Phys. Rev. Lett. 102 096803
[18] Zheng X H, Wang X L, Abtew T A and Zeng Z 2010 J. Phys. Chem. C 114 4190
[19] Li Y F, Zhou Z, Shen P W and Chen Z F 2009 ACS Nano 3 1952
[20] Huang B, Liu F, Wu J, Gu B L and Duan W H 2008 Phys. Rev. B 77 153411
[21] Cruz-Silva E, Barnett Z M, Sumpter B G and Meunier V 2011 Phys. Rev. B 83 155445
[22] Yu S S, Zheng W T, Wen Q B and Jiang Q 2008 Carbon 46 537
[23] Jiang J, Turnbull J, Wen W C, Boguslawski P and Bernholc J 2012 J. Chem. Phys. 136 014702
[24] Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H and Ouyang F P 2012 Chin. Phys. B 21 027102
[25] Martins T B, Miwa R H, da Silva A J R and Fazzio A 2007 Phys. Rev. Lett. 98 196803
[26] Martins T B, da Silva A J R, Miwa R H and Fazzio A 2008 Nano Lett. 8 2293
[27] Edward D M and Katsnelson M I 2006 J. Phys.: Condens. Matter 18 7209
[28] Chen J Z, Vanin M, Hu Y B and Guo H 2012 Phys. Rev. B 86 075146
[29] Li Y, Zhang W, Morgenstern M and Mazzarello R 2013 Phys. Rev. Lett. 110 216804
[30] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[31] Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
[32] Shim J, Lui C H, Ko T Y, Yu Y J, Kim P, Heinz T F and Ryu S 2012 Nano Lett. 12 648
[33] Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Nat. Nanotech. 3 654
[34] Xia F N, Farmer D B, Lin Y M and Avouris P 2010 Nano Lett. 10 715
[35] Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y and Duan X F 2010 Nature 467 305
[36] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[37] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Blöchl P E 1994 Phys. Rev. B 50 17953
[41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[42] Momma K and Izumi F 2008 J. Appl. Crystallogr 41 653
[43] Blundell S 2001 Magnetism in Condensed Matter (Oxford Master Series in Condensed Matter Physics) p. 145
[44] Kunstmann J, Özdoğan C, Quandt A and Fehske H 2011 Phys. Rev. B 83 045414
[45] Lei S L, Li B, Huang J, Li Q X and Yang J L 2013 Chin. Phys. Lett. 30 077502
[46] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[47] Feng W, Lei S L, Li Q X and Zhao A D 2011 J. Phys. Chem. C 115 24858
[48] Chen J H, Li L, Cullen W G, Williams E D and Fuhrer M S 2011 Nat. Phys. 7 535
[49] Nair R R, Tsai I L, Sepioni M, Lehtinen O, Keinonen J, Krasheninnikov A V, Castro Neto A H, Katsnelson M I, Geim A K and Grigorieva I V 2013 Nat. Commun. 4 2010
[1] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[2] One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects
Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航). Chin. Phys. B, 2017, 26(12): 127310.
[3] First principle study of edge topological defect-modulated electronic and magnetic properties in zigzag graphene nanoribbons
Lu-Ting Huang(黄露婷), Zheng Chen(陈铮), Yong-Xin Wang(王永欣), Yan-Li Lu(卢艳丽). Chin. Phys. B, 2017, 26(10): 103103.
[4] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[5] Electronic properties of graphene nanoribbon doped by boron/nitrogen pair: a first-principles study
Xiao Jin,Yang Zhi-Xiong,Xie Wei-Tao,Xiao Li-Xin,Xu Hui,OuYang Fang-Ping. Chin. Phys. B, 2012, 21(2): 027102.
[6] Spin-polarized transport in graphene nanoribbon superlattices
Yu Xin-Xin, Xie Yue-E, Yang Tao, Chen Yuan-Ping. Chin. Phys. B, 2012, 21(10): 107202.
[7] Negative differential resistance behaviour in N-doped crossed graphene nanoribbons
Chen Ling-Na, Ma Song-Shan, Ouyang Fang-Ping, Wu Xiao-Zan, Xiao Jin, Xu Hui. Chin. Phys. B, 2010, 19(9): 097301.
[8] Spin-polarization-dependent transport in a quantum dot array coupled with an Aharonov–Bohm ring
Wang Rui, Kong Ling-Min, Zhou Yun-Qing, Zhang Cun-Xi, Xing Zhi-Yong. Chin. Phys. B, 2010, 19(12): 127202.
[9] The complex band structure for armchair graphene nanoribbons
Zhang Liu-Jun, Xia Tong-Sheng. Chin. Phys. B, 2010, 19(11): 117106.
[10] First-principles study of structural, electronic, andmagnetic properties of Mn4XGe3 (X =Fe,Co,Ni)
Zhao Yong-Hong, Liu Bang-Gui. Chin. Phys. B, 2008, 17(9): 3417-3421.
No Suggested Reading articles found!