Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 066801    DOI: 10.1088/1674-1056/23/6/066801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Binding energies of impurity states in strained wurtzite GaN/AlxGa1-xN heterojunctions with finitely thick potential barriers

Feng Zhen-Yu, Ban Shi-Liang, Zhu Jun
College of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Abstract  Ground state binding energies of donor impurities in a strained wurtzite GaN/AlxGa1-xN heterojunction with a potential barrier of finite thickness are investigated using a variational approach combined with a numerical computation. The built-in electric field due to the spontaneous and piezoelectric polarization, the strain modification due to the lattice mismatch near the interfaces, and the effects of ternary mixed crystals are all taken into account. It is found that the binding energies by using numerical wave functions are obviously greater than those by using variational wave functions when impurities are located in the channel near the interface of a heterojunction. Nevertheless, the binding energies using the former functions are obviously less than using the later functions when impurities are located in the channel far from an interface. The difference between our numerical method and the previous variational method is huge, showing that the former should be adopted in further work for the relevant problems. The binding energies each as a function of hydrostatic pressure are also calculated. But the change is unobvious in comparison with that obtained by the variational method.
Keywords:  wurtzite      GaN/AlxGa1-xN heterojunction      impurity state      binding energy  
Received:  23 August 2013      Revised:  28 December 2013      Published:  15 June 2014
PACS:  68.35.bg (Semiconductors)  
  68.47.Fg (Semiconductor surfaces)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60966001) and the Key Project of the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 20080404Zd02 and 2013ZD02).
Corresponding Authors:  Feng Zhen-Yu, Ban Shi-Liang     E-mail:  xiaofzhenyu@163.com;slban@imu.edu.cn

Cite this article: 

Feng Zhen-Yu, Ban Shi-Liang, Zhu Jun Binding energies of impurity states in strained wurtzite GaN/AlxGa1-xN heterojunctions with finitely thick potential barriers 2014 Chin. Phys. B 23 066801

[1] Miyoshi M, Ishikawa H, Egawa T, Asai K, Mouri M, Shibata T, Tanaka M and Oda O 2004 Appl. Phys. Lett. 85 1710
[2] Kim T W, Choo D C, Yoo K H, Jung M H, Cho Y H, Lee J H and Lee J H 2005 J. Appl. Phys. 97 103721
[3] Fu A B, Hao M R, Yang Y, Shen W Z and Liu H C 2013 Chin. Phys. B 22 026803
[4] Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S and Wu D M 2012 Chin. Phys. B 21108504
[5] Ma X H, Pan C Y, Yang L Y, Yu H Y, Yang L, Quan S, Wang H, Zhang J C and Hao Y 2011 Chin. Phys. B 20 027304
[6] Wu J Q 2009 J. Appl. Phys. 106 011101
[7] Lepkowski S P, Teisseyre H, Suski T, Perlina P, Grandjean N and Massies J 2001 Appl. Phys. Lett. 79 1483
[8] Lepkowski S P 2007 Phys. Rev. B 75 195303
[9] Duan Y F, Li J B, Li S S and Xia J B 2008 J. Appl. Phys. 103 023705
[10] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 10024
[11] Bernardini F, Fiorentini V and Vanderbilt D 2001 Phys. Rev. B 63 193201
[12] Wagner J M and Bechstedt F 2002 Phys. Rev. B 66 115202
[13] Sánchez-Rojas J L, Garrido J A and Muñoz E 2000 Phys. Rev. B 61 2773
[14] Fonoberov V A and Balandin A A 2003 J. Appl. Phys. 94 7178
[15] Fonoberov V A, Pokatilov E P and Balandin A A 2003 J. Nanosci. Nanotechnol. 3 253
[16] Fonoberov V A 2004 J. Vac. Sci. Technol. B 22 2190
[17] Fonoberov V A 2004 Appl. Phys. Lett. 85 5971
[18] Fonoberov V A and Balandin A A 2004 Phys. Rev. B 70 195410
[19] Pokatilova E P, Nika D L and Balandin A A 2003 J. Superlattices and Microstructures 33 155
[20] Pokatilova E P, Nika D L, Askerov A S and Balandin A A 2007 J. Appl. Phys. 102 054304
[21] Pokatilova E P 2006 Appl. Phys. Lett. 89 113508
[22] Pokatilova E P, Nika D L and Balandin A A 2006 Appl. Phys. Lett. 89 112110
[23] Saidi I, Bouzaiene L, Gazzah M H, Mejri H and Maaref H 2006 Solid State Commun. 140 308
[24] Gökden S, I1gaz A, Balkan N and Mazzucato S 2004 Physica E 25 86
[25] Gökden S 2004 Physica E 23 19
[26] Wan X J, Wang X L, Xiao H L, Wang C M, Feng C, Deng Q W, Qu S Q, Zhang J W, Hou X, Cai S J and Feng Z H 2013 Chin. Phys. Lett. 30 057101
[27] Shen B, Shi H T, Zhang R, Chen Z Z and Zheng Y D 2001 Chin. Phys. Lett. 18 283
[28] Wen B, Jiang R L, Zhou J J, Ji X L, Liang L Y, Kong Y C, Shen B, Zhang R and Zheng Y D 2004 Chin. Phys. Lett. 21 720
[29] Ban S L and Hasbun J E 1999 Phys. Rev. B 59 2276
[30] Ban S L and Hasbun J E 1999 Solid State Commun. 109 93
[31] Kasapolgu E, Sari H and Sokmen I 2003 Physica B 339 17
[32] Zhang M and Ban S L 2009 Chin. Phys. B 18 5437
[33] Zhang M and Ban S L 2009 Chin. Phys. B 18 4449
[34] Xia C X, Zeng Z P and Wei S Y 2010 Physica B 405 3237
[35] Yoshida S, Ishii H, Li J, Wang D L and Ichikawa M 2003 Solid-State Electronics 47 589
[36] Wang Y, Ma L, Yu Z P and Tian L 2004 Superlattices and Microstructures 36 869
[37] Tripathi N, Jindal V, Shahedipour-Sandvik F, Rajan S and Vert A 2010 Solid-State Electronics 54 1291
[38] Zhu J, Ban S L and Ha S H 2012 Mod. Phys. Lett. B 26 1250172
[39] Zhang M and Ban S L 2008 Acta Phys. Sin. 57 4459 (in Chinese)
[40] Ban S L, Hasbun J E and Bull 1998 Am. Phys. Soc. 43 914
[41] Kalliakos S, Lefebvre P and Taliercio T 2003 Phys. Rev. B 67 205307
[42] Perlin P, Mattos L, Shapiro N A, Kruger J, Wong W S, Sands T, Cheung N W and Weber E R 1999 J. Appl. Phys. 85 2385
[43] Wagner J M and Bechstedt F 2002 Phys. Rev. B 66 115202
[44] Shan W, Hauenstein R J, Fischer A J, Song J J, Perry W G, Bremser M D, Davis R F and Goldenberg B 1996 Phys. Rev. B 54 13460
[45] Ban S L and Hasbun J E 1999 J. Eur. Phys. B 8 453
[46] Ting D Z Y and Chang Y C 1987 Phys. Rev. B 36 4359
[47] Lepkowski S P, Teisseyre H, Suski T, Perlin P, Grandjean N and Massies J 1999 Appl. Phys. Lett. 79 1483
[48] Vaschenko G, Patel D, Menoni C S, Gardner N F, Sun J, Götz W, Tomé C N and Clausen B 2001 Phys. Rev. B 64 241308
[49] Petrov I, Mojab E, Powell R C, Greene J E, Hultman L and Sundgren J E 1992 Appl. Phys. Lett. 60 2491
[50] Goñi A R, Syassen K and Cardona M 1990 Phys. Rev. B 41 10104
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Site preferences of alloying transition metal elements in Ni-based superalloy: A first-principles study
Baokun Lu(路宝坤), Chong-Yu Wang(王崇愚), Zhihui Du(都志辉). Chin. Phys. B, 2018, 27(9): 097102.
[3] Influences of adsorptions of some inorganic molecules on electronic, optical, and thermodynamic properties of Mg12O12 nanocage: A computational approach
Asghar Mohammadi Hesari, Hamid Reza Shamlouei. Chin. Phys. B, 2018, 27(8): 084210.
[4] Density functional theory study of structural stability for gas hydrate
Ping Guo(郭平), Yi-Long Qiu(邱奕龙), Long-Long Li(李龙龙), Qiang Luo(罗强), Jian-Fei Zhao(赵建飞), Yi-Kun Pan(潘意坤). Chin. Phys. B, 2018, 27(4): 043103.
[5] Fractional-dimensional approach for excitons in GaAsfilms on AlxGa1-xAs substrates
Zhen-Hua Wu(武振华), Lei Chen(陈蕾), Qiang Tian(田强). Chin. Phys. B, 2016, 25(3): 037310.
[6] Effects of electron-optical phonon interactions on the polaron energy in a wurtzite ZnO/MxZn1-xO quantum well
Zhao Feng-Qi, Zhang Min, Bai Jin-Hua. Chin. Phys. B, 2015, 24(9): 097105.
[7] Surface saturation control on the formation of wurtzite polytypes in zinc blende SiC nanofilms grown on Si-(100) substrates
Liu Xing-Fang, Sun Guo-Sheng, Liu Bin, Yan Guo-Guo, Guan Min, Zhang Yang, Zhang Feng, Dong Lin, Zheng Liu, Liu Sheng-Bei, Tian Li-Xin, Wang Lei, Zhao Wan-Shun, Zeng Yi-Ping. Chin. Phys. B, 2013, 22(8): 086802.
[8] First-principles study on the effect of high In doping on the conductivity of ZnO
Hou Qing-Yu, Li Ji-Jun, Ying Chun, Zhao Chun-Wang, Zhao Er-Jun, Zhang Yue. Chin. Phys. B, 2013, 22(7): 077103.
[9] First-principles study of Ar adsorptions on the (111) surfaces of Pd, Pt, Cu, and Rh
Niu Wen-Xia, Zhang Hong, Gong Min, Cheng Xin-Lu. Chin. Phys. B, 2013, 22(6): 066802.
[10] Phonon-assisted intersubband transitions in wurtzite GaN/InxGa1-xN quantum wells
Zhu Jun, Ban Shi-Liang, Ha Si-Hua. Chin. Phys. B, 2012, 21(9): 097301.
[11] Nonlinear dynamics in wurtzite InN diodes under terahertz radiation
Feng Wei. Chin. Phys. B, 2012, 21(3): 037306.
[12] Ar adsorptions on Al (111) and Ir (111) surfaces: a first-principles study
Niu Wen-Xia,Zhang Hong. Chin. Phys. B, 2012, 21(2): 026802.
[13] Built-in electric field effect on cyclotron mass of magnetopolarons in a wurtzite InxGa1-xN/GaN quantum well
Zhao Feng-Qi, Yong Mei. Chin. Phys. B, 2012, 21(10): 107103.
[14] Impurity-related electronic properties in quantum dots under electric and magnetic fields
Zhang Hong, Zhai Li-Xue, Wang Xue, Zhang Chun-Yuan, Liu Jian-Jun. Chin. Phys. B, 2011, 20(3): 037301.
[15] Theoretical studies on the structural, electronic, and optical properties of Ag2HgSnSe4
Li Dan, Zhang Xing-Hong. Chin. Phys. B, 2011, 20(12): 126102.
No Suggested Reading articles found!