Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 066501    DOI: 10.1088/1674-1056/23/6/066501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phase transition and thermal expansion property of Cr2-xZr0.5xMg0.5xMo3O12 solid solution

Song Wen-Boa, Wang Jun-Qiaoa, Li Zhi-Yuana, Liu Xian-Shenga, Yuan Bao-Hea b, Liang Er-Juna
a School of Physical Science & Engineering and Key Laboratory of Materials Physics of Ministryof Education of China, Zhengzhou University, Zhengzhou 450052, China;
b North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Abstract  Compounds with the formula Cr2-xZr0.5xMg0.5xMo3O12 (x = 0.0, 0.3, 0.5, 0.9, 1.3, 1.5, 1.7, 1.9) are synthesized, and the effects of Zr4 + and Mg2+ co-incorporation on the phase transition, thermal expansion, and Raman mode are investigated. It is found that Cr2-xZr0.5xMg0.5xMo3O12 crystallize into monoclinic structures for x ≤ 1.3 and orthorhombic structures for x ≥ 1.5 at room temperature. The phase transition temperature from a monoclinic to an orthorhombic structure of Cr2Mo3O12 can be reduced by the partial substitution of (ZrMg)6+ for Cr3+. The overall linear thermal expansion coefficient decreases with the increase of the (ZrMg)6+ content in an orthorhombic structure sample. The co-incorporation of Zr4 + and Mg2+ in the lattice results in the occurrence of new Raman modes and the hardening of the symmetric vibrational modes, which are attributed to the MoO4 tetrahedra sharing corners with ZrO6/MgO6 octahedra and to the strengthening of Mo-O bonds due to less electronegativities of Zr4+ and Mg2+ than Cr3+, respectively.
Keywords:  negative thermal expansion material      phase transition      Raman spectroscopy     
Received:  10 October 2013      Published:  15 June 2014
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974183 and 11104252), the Science Fund of the Ministry of Education of China (Grant No. 20114101110003), the Fund for Science & Technology Innovation Team of Zhengzhou City, China (Grant No. 112PCXTD337), and the Postdoctoral Research Sponsorship in Henan Province, China (Grant No. 2011002).
Corresponding Authors:  Liang Er-Jun     E-mail:  ejliang@zzu.edu.cn

Cite this article: 

Song Wen-Bo, Wang Jun-Qiao, Li Zhi-Yuan, Liu Xian-Sheng, Yuan Bao-He, Liang Er-Jun Phase transition and thermal expansion property of Cr2-xZr0.5xMg0.5xMo3O12 solid solution 2014 Chin. Phys. B 23 066501

[1] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[2] Perottoni C A and Da Jornada J A H 1998 Science 280 886
[3] Liang E J 2010 Recent Pat. Mater. Sci. 3 106
[4] Chatterji T, Hansen T C, Brunelli M and Henry P F 2009 Appl. Phys. Lett. 94 241902
[5] Amos T G, Yokochi A and Sleight A W 1998 J. Solid State Chem. 141 303
[6] Yuan H L, Yuan B H, Li F and Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese)
[7] Kennedy B J, Kubota Y and Kato K 2005 Solid State Commun. 136 177
[8] Evans J S O, Mary T A and Sleight A W 1998 J. Solid State Chem. 137 148
[9] Liang E J, Huo H L, Wang Z, Chao M J and Wang J P 2009 Solid State Sci. 11 139
[10] Li Q J, Yuan B H, Song W B, Liang E J and Yuan B 2012 Chin. Phys. B 21 046501
[11] Wu M M, Peng J, Zu Y, Liu R D, Hu Z B, Liu Y T and Chen D F 2012 Chin. Phys. B 21 116102
[12] Liu F S, Chen X P, Xie H X, Ao W Q and Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese)
[13] Suzuki T and Omote A 2004 J. Am. Ceram. Soc. 87 1365
[14] Gindhart A M, Lind C and Green M 2008 J. Mater. Res. 23 210
[15] Marinkovic B A, Jardim P M, Ari M, de Avillez R R, Rizzo F and Ferreira F F 2008 Phys. Status Solid B 245 2514
[16] Kimberly J M, Michel B J, Mary A W and Bojan A M 2012 Solid State Commun. 152 1748
[17] Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H and Wang J Q 2013 Chin. Phys. Lett. 30 126502
[18] Liang E J, Huo H L, Wang J P and Chao M J 2008 J. Phys. Chem. C 112 6577
[19] Ari M, Jardim P M, Marinkovic B A, Rizzo F and Ferreira F F 2008 J. Solid State Chem. 181 1472
[20] Tyagi A K, Achary S N and Mathews M D 2002 J. Alloys Compd. 339 207
[21] Mary T A and Sleight A W 1999 J. Mater. Res. 14 912
[22] Kimberly J M, Carl P R, Mario B, Bojan A M, Luciana P and Mary A W 2013 J. Am. Ceram. Soc. 96 561
[23] Suzuki T and Omote A 2006 J. Am. Ceram. Soc. 89 691
[24] Li Z Y, Song W B and Liang E J 2011 J. Phys. Chem. C 115 17806
[1] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[2] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[3] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[4] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[5] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[6] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[7] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[8] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[9] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[10] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[11] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍), Yi-Nuo Liu(刘一诺), Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[12] Distribution of a polymer chain between two interconnected spherical cavities
Chao Wang(王超), Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), Meng-Bo Luo(罗孟波). Chin. Phys. B, 2020, 29(10): 108201.
[13] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵), Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(10): 108102.
[14] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[15] Structural transitions in NaNH2 via recrystallization under high pressure
Yanping Huang(黄艳萍), Xiaoli Haung(黄晓丽), Xin Wang(王鑫), Wenting Zhang(张文亭), Di Zhou(周迪), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(9): 096402.
No Suggested Reading articles found!