Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064208    DOI: 10.1088/1674-1056/23/6/064208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Gap solitons in parity–time complex superlattice with dual periods

Wang Hong-Chenga, Ling Dong-Xionga, Zhang Shao-Qianga, Zhu Xingb, He Ying-Jic
a College of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China;
b State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China;
c School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665, China
Abstract  A theory is presented to investigate the existence and propagation stability of gap solitons in a parity-time (PT) complex superlattice with dual periods. In this superlattice, the real and imaginary parts are both in the form of superlattices with dual periods. In the self-focusing nonlinearity, PT solitons can exist in the semi-infinite gap. However, only those gap solitons with low powers can propagate stably, whereas the high-power solitons present periodic oscillation and simultaneously suffer energy decay. In the self-defocusing nonlinearity, PT solitons only exist in the first gap and all these solitons are stable.
Keywords:  spatial soliton      parity-time soliton      gap soliton      superlattice  
Received:  11 October 2013      Revised:  07 November 2013      Published:  15 June 2014
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.65.Wi (Nonlinear waveguides)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61308019) and the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province, China (Grant No. Yq2013157).
Corresponding Authors:  Wang Hong-Cheng     E-mail:  hc_wang@126.com

Cite this article: 

Wang Hong-Cheng, Ling Dong-Xiong, Zhang Shao-Qiang, Zhu Xing, He Ying-Ji Gap solitons in parity–time complex superlattice with dual periods 2014 Chin. Phys. B 23 064208

[1] Ruschhaupt A, Delgado F and Muga J G 2005 J. Phys. A: Math. Gen. 38 L171
[2] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[3] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
[4] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[5] Abdullaev F Kh, Kartashov Y V, Konotop V V and Zezyulin D A 2011 Phys. Rev. A 83 041805
[6] Shi Z, Jiang X, Zhu X and Li H 2011 Phys. Rev. A 84 053855
[7] Nixon S, Ge L and Yang J 2012 Phys. Rev. A 85 023822
[8] Li H, Shi Z, Jiang X and Zhu X 2011 Opt. Lett. 36 3290
[9] Kartashov Y V 2013 Opt. Lett. 38 2600
[10] He Y, Zhu X, Mihalache D, Liu J and Chen Z 2012 Phys. Rev. A 85 013831
[11] Huang C, Li C and Dong L 2013 Opt. Express 21 3917
[12] Li C Y, Huang C M and Dong L W 2013 Chin. Phys. B 22 074209
[13] Chen W and Mill D L 1987 Phys. Rev. Lett. 58 160
[14] Driben R and Malomed B A 2011 Opt. Lett. 36 4323
[15] Alexeeva N V, Barashenkov I V, Sukhorukov A A and Kivshar Y S 2012 Phys. Rev. A 85 063837
[16] Zhu X, Wang H, Zheng L X, Li H and He Y J 2011 Opt. Lett. 36 2680
[17] Hu S M and Hu W 2012 Chin. Phys. B 21 024212
[18] Yang J and Lakoba T I 2007 Stud. Appl. Math. 118 153
[19] Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM)
[1] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
[2] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[3] An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing
Qing Hu(胡庆), Boyi Dong(董博义), Lun Wang(王伦), Enming Huang(黄恩铭), Hao Tong(童浩), Yuhui He(何毓辉), Ming Xu(徐明), Xiangshui Miao(缪向水). Chin. Phys. B, 2020, 29(7): 070701.
[4] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[5] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[6] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[7] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐), Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[8] Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer
Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056801.
[9] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[10] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[11] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[12] Enhanced magneto-electric effect in manganite tricolor superlattice with artificially broken symmetry
Huanyu Pei(裴环宇), Shujin Guo(郭蜀晋), Hong Yan(闫虹), Changle Chen(陈长乐), Bingcheng Luo(罗炳成), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(9): 097701.
[13] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[14] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[15] First-principles study of polarization and piezoelectricity behavior in tetragonal PbTiO3-based superlattices
Zhenye Zhu(朱振业). Chin. Phys. B, 2018, 27(2): 027701.
No Suggested Reading articles found!