Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 063601    DOI: 10.1088/1674-1056/23/6/063601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Influence of Ni on Cu precipitation in Fe–Cu–Ni ternary alloy by an atomic study

Zhu Lu-Shan (朱露珊), Zhao Shi-Jin (赵世金)
Key Laboratory for Microstructures, Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Abstract  The early aging Cu precipitations in Fe-3%Cu and Fe-3%Cu-4%Ni ternary alloys are investigated by molecular dynamics (MD) simulations. The results show that the average size of Cu clusters in Fe-3%Cu-4%Ni alloy is larger than that in Fe-3%Cu alloy. The diffusion of Cu is accelerated by Ni according to the mean square displacement (MSD). Furthermore, the whole formation process of Cu-rich clusters is analyzed in detail, and it is found that the presence of Ni promotes small Cu-rich clusters to be combined into big ones. Ni atoms prefer to stay at the combination positions of small clusters energetically due to a large number of the first nearest neighbor Cu-Ni interactions, which is verified by first-principles calculations based on density functional theory (DFT).
Keywords:  Cu precipitation      Fe-Cu-Ni ternary alloy      molecular dynamics      first-principles calculations  
Received:  20 October 2013      Revised:  12 December 2013      Accepted manuscript online: 
PACS:  36.40.-c (Atomic and molecular clusters)  
  61.82.Bg (Metals and alloys)  
  02.70.Ns (Molecular dynamics and particle methods)  
  31.15.E-  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50931003 and 51301102) and the 085 Project at Shanghai University, China.
Corresponding Authors:  Zhao Shi-Jin     E-mail:  shijin.zhao@shu.edu.cn

Cite this article: 

Zhu Lu-Shan (朱露珊), Zhao Shi-Jin (赵世金) Influence of Ni on Cu precipitation in Fe–Cu–Ni ternary alloy by an atomic study 2014 Chin. Phys. B 23 063601

[1] Vaynman S, Isheim D, Kolli R P, Bhat S P, Seidman D N and Fine M E 2008 Metall. Mater. Trans. A 39 363
[2] Zhang Z, Liu C, Wen Y, Hirata A, Guo S, Chen G, Chen M W and Chin B A 2012 Metall. Mater. Trans. A 43 351
[3] Nagai Y, Tang Z, Hassegawa M, Kanai T and Saneyasu M 2001 Phys. Rev. B 63 134110
[4] Odette G R and Lucas G E 2001 JOM 53 18
[5] Odette G R and Lucas G E 1998 Radiat. Eff. Defects Solids 144 189
[6] Knott J and English C 1999 Int. J. Press. Vessels Pip. 76 891
[7] Auger P, Pareige P, Welzel S and Duysen J V 2000 J. Nucl. Mater. 280 331
[8] Xu G, Chu D F, Cai L L, Zhou B X, Wang W and Peng J C 2011 Acta Metall Sin. 47 905 (in Chinese)
[9] Yu X M and Zhao S J 2013 Acta Metall Sin. 49 569 (in Chinese)
[10] Liu Q D and Zhao S J 2012 MRS Commun. 2 127
[11] Liu Q D and Zhao S J 2012 Metall. Mater. Trans. A 44 163
[12] Odette G R and Wirth B D 1997 J. Nucl. Mater. 251 157
[13] Osetsky Y N and Serra A 1997 Philos. Mag. A 75 1097
[14] Bouar Y L 2001 Acta Mater. 49 2661
[15] Soisson F and Fu C C 2007 Phys. Rev. B 76 214102
[16] Al-Motasem A T, Posselt M, Bergner F and Birkenheuer U 2011 J. Nucl. Mater. 414 161
[17] Molnar D, Mukherjee R, Choudhury A, Mora A, Binkele P, Selzer M, Nestler B and Schmauder S 2012 Acta Mater. 60 6961
[18] Hu L J, Zhao S J and Liu Q D 2012 Mater. Sci. Eng. A 556 140
[19] Gao N, Wei K F, Zhang S X and Wang Z G 2012 Chin. Phys. Lett. 29 096012
[20] Miller M K, Pareige P and Burke M G 2000 Mater. Charact. 44 235
[21] Miller M K and Russell K F 2007 J. Nucl. Mater. 371 145
[22] Osamura K, Okuda H, Asano K, Furusaka M, Kishida K, Kurosawa F and Uemoriet R 1994 ISIJ Int. 34 346
[23] Zhang C and Enomoto M 2006 Acta Mater. 54 4183
[24] Al-Motasem A T, Posselt M and Bergner F 2011 J. Nucl. Mater. 418 215
[25] Seko A, Odagaki N, Nishitani S R, Tanaka I and Adachi H 2004 Mater. Trans. 45 1978
[26] Wang Y, Hou H Y, Liu X B, Wang R S and Wang J T 2012 arXiv: 1212.6900 [hep-ph]
[27] Bonny G, Pasianot R C, Castin N and Malerba L 2009 Philos. Mag. 89 3531
[28] Plimpton S 1995 J. Comput. Phys. 117 1
[29] William H, Andrew D and Klaus S 1996 J. Mol. Graphics 14 33
[30] Hyde J M, Marquis E A, Wilford K B and Williams T J 2011 Ultramicroscopy 111 440
[31] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298
[35] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[36] Marian J, Wirth B D, Odette G R and Perlado J M 2004 Comput. Mater. Sci. 31 347
[37] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[38] Kittel C and McEuen P 1996 Introduction to Solid State Physics, 8th edn. (New York: Wiley) p. 37
[39] Murthy A S, Medvedeva J E, Isheim D, Lekakh S L, Richards V L and Van Aken D C 2012 Scripta Mater. 66 943
[40] Xie Y P and Zhao S J 2011 Comput. Mater. Sci. 50 2586
[41] Vincent E, Becquart C S and Domain C 2006 J. Nucl. Mater. 351 88
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[8] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[11] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[12] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[13] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
No Suggested Reading articles found!