Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 063601    DOI: 10.1088/1674-1056/23/6/063601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Influence of Ni on Cu precipitation in Fe–Cu–Ni ternary alloy by an atomic study

Zhu Lu-Shan, Zhao Shi-Jin
Key Laboratory for Microstructures, Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Abstract  The early aging Cu precipitations in Fe-3%Cu and Fe-3%Cu-4%Ni ternary alloys are investigated by molecular dynamics (MD) simulations. The results show that the average size of Cu clusters in Fe-3%Cu-4%Ni alloy is larger than that in Fe-3%Cu alloy. The diffusion of Cu is accelerated by Ni according to the mean square displacement (MSD). Furthermore, the whole formation process of Cu-rich clusters is analyzed in detail, and it is found that the presence of Ni promotes small Cu-rich clusters to be combined into big ones. Ni atoms prefer to stay at the combination positions of small clusters energetically due to a large number of the first nearest neighbor Cu-Ni interactions, which is verified by first-principles calculations based on density functional theory (DFT).
Keywords:  Cu precipitation      Fe-Cu-Ni ternary alloy      molecular dynamics      first-principles calculations     
Received:  20 October 2013      Published:  15 June 2014
PACS:  36.40.-c (Atomic and molecular clusters)  
  61.82.Bg (Metals and alloys)  
  02.70.Ns (Molecular dynamics and particle methods)  
  31.15.E-  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50931003 and 51301102) and the 085 Project at Shanghai University, China.
Corresponding Authors:  Zhao Shi-Jin     E-mail:  shijin.zhao@shu.edu.cn

Cite this article: 

Zhu Lu-Shan, Zhao Shi-Jin Influence of Ni on Cu precipitation in Fe–Cu–Ni ternary alloy by an atomic study 2014 Chin. Phys. B 23 063601

[1] Vaynman S, Isheim D, Kolli R P, Bhat S P, Seidman D N and Fine M E 2008 Metall. Mater. Trans. A 39 363
[2] Zhang Z, Liu C, Wen Y, Hirata A, Guo S, Chen G, Chen M W and Chin B A 2012 Metall. Mater. Trans. A 43 351
[3] Nagai Y, Tang Z, Hassegawa M, Kanai T and Saneyasu M 2001 Phys. Rev. B 63 134110
[4] Odette G R and Lucas G E 2001 JOM 53 18
[5] Odette G R and Lucas G E 1998 Radiat. Eff. Defects Solids 144 189
[6] Knott J and English C 1999 Int. J. Press. Vessels Pip. 76 891
[7] Auger P, Pareige P, Welzel S and Duysen J V 2000 J. Nucl. Mater. 280 331
[8] Xu G, Chu D F, Cai L L, Zhou B X, Wang W and Peng J C 2011 Acta Metall Sin. 47 905 (in Chinese)
[9] Yu X M and Zhao S J 2013 Acta Metall Sin. 49 569 (in Chinese)
[10] Liu Q D and Zhao S J 2012 MRS Commun. 2 127
[11] Liu Q D and Zhao S J 2012 Metall. Mater. Trans. A 44 163
[12] Odette G R and Wirth B D 1997 J. Nucl. Mater. 251 157
[13] Osetsky Y N and Serra A 1997 Philos. Mag. A 75 1097
[14] Bouar Y L 2001 Acta Mater. 49 2661
[15] Soisson F and Fu C C 2007 Phys. Rev. B 76 214102
[16] Al-Motasem A T, Posselt M, Bergner F and Birkenheuer U 2011 J. Nucl. Mater. 414 161
[17] Molnar D, Mukherjee R, Choudhury A, Mora A, Binkele P, Selzer M, Nestler B and Schmauder S 2012 Acta Mater. 60 6961
[18] Hu L J, Zhao S J and Liu Q D 2012 Mater. Sci. Eng. A 556 140
[19] Gao N, Wei K F, Zhang S X and Wang Z G 2012 Chin. Phys. Lett. 29 096012
[20] Miller M K, Pareige P and Burke M G 2000 Mater. Charact. 44 235
[21] Miller M K and Russell K F 2007 J. Nucl. Mater. 371 145
[22] Osamura K, Okuda H, Asano K, Furusaka M, Kishida K, Kurosawa F and Uemoriet R 1994 ISIJ Int. 34 346
[23] Zhang C and Enomoto M 2006 Acta Mater. 54 4183
[24] Al-Motasem A T, Posselt M and Bergner F 2011 J. Nucl. Mater. 418 215
[25] Seko A, Odagaki N, Nishitani S R, Tanaka I and Adachi H 2004 Mater. Trans. 45 1978
[26] Wang Y, Hou H Y, Liu X B, Wang R S and Wang J T 2012 arXiv: 1212.6900 [hep-ph]
[27] Bonny G, Pasianot R C, Castin N and Malerba L 2009 Philos. Mag. 89 3531
[28] Plimpton S 1995 J. Comput. Phys. 117 1
[29] William H, Andrew D and Klaus S 1996 J. Mol. Graphics 14 33
[30] Hyde J M, Marquis E A, Wilford K B and Williams T J 2011 Ultramicroscopy 111 440
[31] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298
[35] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[36] Marian J, Wirth B D, Odette G R and Perlado J M 2004 Comput. Mater. Sci. 31 347
[37] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[38] Kittel C and McEuen P 1996 Introduction to Solid State Physics, 8th edn. (New York: Wiley) p. 37
[39] Murthy A S, Medvedeva J E, Isheim D, Lekakh S L, Richards V L and Van Aken D C 2012 Scripta Mater. 66 943
[40] Xie Y P and Zhao S J 2011 Comput. Mater. Sci. 50 2586
[41] Vincent E, Becquart C S and Domain C 2006 J. Nucl. Mater. 351 88
[1] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[2] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[3] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[4] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[5] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[6] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[7] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[8] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[9] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[10] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[11] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[12] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[13] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[14] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[15] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
No Suggested Reading articles found!