Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060504    DOI: 10.1088/1674-1056/23/6/060504
GENERAL Prev   Next  

Exponential synchronization of chaotic Lur'e systems with time-varying delay via sampled-data control

R. Rakkiyappana, R. Sivasamya, S. Lakshmananb
a Department of Mathematics, Bharathiar University, Coimbatore-641 046, Tamilnadu, India;
b Department of Mathematics, College of Science, UAE University, Al Ain, 15551, United Arab Emirates (UAE)
Abstract  In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequalities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
Keywords:  exponential synchronization      chaotic Lur'e system      time-varying delay      sampled-data control     
Received:  18 September 2013      Published:  15 June 2014
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  R. Rakkiyappan     E-mail:  rakkigru@gmail.com

Cite this article: 

R. Rakkiyappan, R. Sivasamy, S. Lakshmanan Exponential synchronization of chaotic Lur'e systems with time-varying delay via sampled-data control 2014 Chin. Phys. B 23 060504

[1] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[2] Li Z and Han C Z 2002 Chin. Phys. 11 666
[3] Chen S H, Liu J, Xie J and Lu J A 2002 Chin. Phys. 11 233
[4] Guan X P and Hua C C 2002 Chin. Phys. Lett. 19 1031
[5] Sun F Y 2006 Chin. Phys. Lett. 23 32
[6] Wu X, Chen G and Cai J 2007 Physica D 229 52
[7] Grzybowski J M V, Rafikov M and Balthazar J M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2793
[8] Wu Z Q and Kuang Y 2009 Acta Phys. Sin. 58 6823 (in Chinese)
[9] Chen L, Shi Y D and Wang D S 2010 Chin. Phys. B 19 100503
[10] Ma J, Li F, Huang L and Jin W Y 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3770
[11] Guo W 2011 Nonlinear Anal.-Real World Appl. 12 2579
[12] Gu W D, Sun Z Y, Wu X M and Yu C B 2013 Chin. Phys. B 22 080507
[13] Suykens J A K, Yang T and Chua L O 1988 Int. J. Bifur. Chaos 8 1371
[14] Yalcin M E, Suykens J A K and Vandewalle J 2001 Int. J. Bifur. Chaos 11 1707
[15] Suykens J A K, Curran P F and Chua L O 1999 IEEE Trans. Circuits Syst. I-Fundam. Theory Appl. 46 841
[16] He Y, Wen G L and Wang Q G 2006 Int. J. Bifur. Chaos 16 3087
[17] Ma T D, Zhang H G and Fu J 2008 Chin. Phys. B 17 4407
[18] Li T, Yu J and Wang Z 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1796
[19] Lee S M, Kwon O M and Park J H 2011 Chin. Phys. B 20 010506
[20] Han X, Lu J A and Wu X 2004 Chaos, Solitons and Fractals 22 221
[21] Yin C, Zhong S M and Chen W F 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1632
[22] Chen W H, Lu X and Chen F 2008 Phys. Lett. A 372 4210
[23] Lee T H, Wu Z G and Park J H 2012 Appl. Math. Comput. 219 1354
[24] Lu J G and Hill D J 2008 IEEE Trans. Circuits Syst. II-Exp. Briefs 55 586
[25] Kocarev U and Parlitz L 1995 Phys. Rev. Lett. 74 5028
[26] Ji D H, Park J H and Won S C 2009 Phys. Lett. A 373 1044
[27] Yin C, Zhong S, Liu Z and Huang X 2010 World Acad. Sci., Engi. Tech. 4 203
[28] Chen Y, Bi W and Li W 2011 Int. J. Sys. Sci. 42 1105
[29] Han Q L, Xue A, Liu S and Yu X 2008 Int. J. Robust Nonlinear Control 18 278
[30] Shen C and Zhong S 2010 World Acad. Sci., Eng. Tech. 4 316
[31] Ramakrishnan K and Ray G 2011 J. Franklin Inst. 348 1769
[32] Huang H and Feng G 2008 Chaos 18 033113
[33] Zhang G, Shen Y and Wang L 2013 Neural Networks 46 1
[34] Park J H, Ji D H, Won S C, Lee S M and Choi S J 2009 Phys. Lett. A 373 3734
[35] Huang J, Yang Y, Han Z and Zhang J 2012 Circ. Sys. Sign. Process. 31 2001
[36] Huang J, Wang P, Han Z and Cai X 2013 Int. J. Syst. Sci. 44 2338
[37] Khall H K 2002 Nonlinear Systems (New Jersey: Prentice Hall) p. 97
[38] Shen Y and Wang J 2009 IEEE Trans. Neural Networks 20 840
[39] Huang H, Feng G and Cao J 2009 Nonlinear Dyn. 57 441
[40] Wang Y J, Hao J N and Zuo Z Q 2010 Commu. Theor. Phys. 54 679
[41] Wu Z G, Shi P, Su H and Chu J 2013 IEEE Trans. Neural Netw. Learn. Syst. 24 410
[42] Li T, Wang T, Song A and Fei S 2013 IEEE Trans. Neural Netw. Learn. Syst. 99 1
[43] Sun J, Liu G P, Chen J and Rees D 2010 Automatica 46 466
[44] Gu K 2000 39th IEEE Conference on Dscision and Control, December, 2000, Sydney, Australia, p. 2805
[45] Park P, Ko J W and Jeong C 2011 Automatica 47 235
[1] New results for exponential synchronization of linearly coupled ordinary differential systems
Ping Tong(童评), Shi-Hua Chen(陈士华). Chin. Phys. B, 2017, 26(5): 050503.
[2] Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays
Zhe-Ping Yan(严浙平), Yi-Bo Liu(刘一博), Jia-Jia Zhou(周佳加), Wei Zhang(张伟), Lu Wang(王璐). Chin. Phys. B, 2017, 26(4): 040203.
[3] Free-matrix-based time-dependent discontinuous Lyapunov functional for synchronization of delayed neural networks with sampled-data control
Wei Wang(王炜), Hong-Bing Zeng(曾红兵), Kok-Lay Teo. Chin. Phys. B, 2017, 26(11): 110503.
[4] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[5] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[6] Impulsive effect on exponential synchronization of neural networks with leakage delay under sampled-data feedback control
S. Lakshmanan, Ju H. Park, Fathalla A. Rihan, R. Rakkiyappan. Chin. Phys. B, 2014, 23(7): 070205.
[7] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[8] Robust H cluster synchronization analysis of Lurie dynamical networks
Guo Ling, Nian Xiao-Hong, Pan Huan, Bing Zhi-Tong. Chin. Phys. B, 2014, 23(4): 040501.
[9] Exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and mode-dependent probabilistic time-varying delays
R. Rakkiyappan, N. Sakthivel, S. Lakshmanan. Chin. Phys. B, 2014, 23(2): 020205.
[10] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[11] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi, Zhang Hua-Guang, Wang Zhan-Shan, Liang Hong-Jing. Chin. Phys. B, 2013, 22(9): 090504.
[12] Stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks with mixed delays and Wiener process based on sampled-data control
M. Kalpana, P. Balasubramaniam. Chin. Phys. B, 2013, 22(7): 078401.
[13] Leader–following consensus control for networked multi-teleoperator systems with interval time-varying communication delays
M. J. Park, S. M. Lee, J. W. Son, O. M. Kwon, E. J. Cha. Chin. Phys. B, 2013, 22(7): 070506.
[14] H synchronization of chaotic neural networks with time-varying delays
O. M. Kwon, M. J. Park, Ju H. Park, S. M. Lee, E. J. Cha. Chin. Phys. B, 2013, 22(11): 110504.
[15] Pinning synchronization of time-varying delay coupled complex networks with time-varying delayed dynamical nodes
Wang Shu-Guo,Yao Hong-Xing. Chin. Phys. B, 2012, 21(5): 050508.
No Suggested Reading articles found!