Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060306    DOI: 10.1088/1674-1056/23/6/060306
GENERAL Prev   Next  

Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity

Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明)
Laboratory of Nanophotonic Functional Materials and Devices (SIPSE), Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
Abstract  We propose a scheme for generating a hyperentangled four-photon cluster state that is simultaneously entangled in polarization modes and spatial modes. This scheme is based on linear optical elements, weak cross-Kerr nonlinearity, and homodyne detection. Therefore, it is feasible with current experimental technology.
Keywords:  hyperentangled cluster state      cross-Kerr nonlinearity      homodyne detection      controlled-Z gate  
Received:  20 July 2013      Revised:  05 November 2013      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 60978009 and 61378012), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the "973" Project (Grant Nos. 2011CBA00200 and 2013CB921804), and the PCSIRT (Grant No. IRT1243).
Corresponding Authors:  Zhang Zhi-Ming     E-mail:  zmzhang@scnu.edu.cn

Cite this article: 

Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明) Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity 2014 Chin. Phys. B 23 060306

[1] Jeong H and Kim M S 2002 Phys. Rev. A 65 042305
[2] Ralph T C, Gilchrist A and Milburn G J 2003 Phys. Rev. A 68 042319
[3] Van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
[4] Jeong H, Kim M S and Lee J 2001 Phys. Rev. A 64 052308
[5] Gottesman D and Preskill J 2001 Phys. Rev. A 63 022309
[6] Cerf N J 2001 Phys. Rev. A 63 052311
[7] Dur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[8] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[9] Chen L B 2002 Chin. Phys. 11 999
[10] Long G. L and Liu X. S 2002 Phys. Rev. A 65 032302
[11] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[12] Barreiro J T, Langford N K, Peters N A and Kwiat P G 2005 Phys. Rev. Lett. 95 260501
[13] Barbieri M, Cinelli C, Mataloni P and Martini F D 2005 Phys. Rev. A 72 052110
[14] Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022
[15] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[16] Ekert A K 1991 Phys. Rev. Lett. 67 661
[17] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[18] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[19] Wang T J, Lu Y and Long G L 2012 Phys. Rev. A 86 042337
[20] Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
[21] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[22] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[23] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[24] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[25] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[26] Zhang Z M, Khosa A H, Ikram M and Zubairy M S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1917
[27] Zhang Z M, Yang J and Yu Y F 2008 J. Phys. B: At. Mol. Opt. Phys. 41 025502
[28] Yang J, Ren M, Yu Y F, Zhang Z M and Liu S H 2008 Acta Phys. Sin. 57 887 (in Chinese)
[29] Lai B H, Du G, Yu Y F, Zhang Z M and Liu S H 2010 Acta Phys. Sin. 59 1017 (in Chinese)
[30] Zhao L F, Lai B H, Mei F, Yu Y F, Feng X L and Zhang Z M 2010 Chin. Phys. B 19 094207
[31] Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
[32] Dur W and Briegel H J 2004 Phys. Rev. Lett. 92 180403
[33] Ye L, Yu L B and Guo G C 2005 Phys. Rev. A 72 034304
[34] Zou X B and Mathis W 2005 Phys. Rev. A 72 013809
[35] Dong P, Xue Z Y, Yang M and Cao Z L 2006 Phys. Rev. A 73 033818
[36] Zhao C R and Ye L 2011 Sci. China: Phys. Mech. Astron. 54 479
[37] Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
[38] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[39] Yurke B 1985 Phys. Rev. A 32 311
[40] Shapiro J H 2006 Phys. Rev. A 73 062305
[41] Banacloche J G 2010 Phys. Rev. A 81 043823
[42] Hofmann H F, Kojima K, Takeuchi S and Sasaki K 2003 J. Opt. B 5 281
[43] Feizpour A, Xing X X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603
[44] Hoi I C, Kockum A F, Palomaki T, Stace T M, Fan B, Tornberg L, Sathyamoorthy S R, Johansson G, Delsing P andWilson C M 2013 Phys. Rev. Lett. 111 053601
[1] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[2] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[3] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[4] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[5] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[6] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[7] Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(9): 090309.
[8] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[9] Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Sun Li-Li (孙立莉), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030313.
[10] Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(4): 044205.
[11] A realizable multi-bit dense coding scheme with an Einstein–Podolsky–Rosen channel
Guo Qi (郭奇), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿), Yeon Kyu-Hwang. Chin. Phys. B, 2012, 21(10): 100301.
[12] Long-distance quantum state transfer through cavity-assisted interaction
Li Yu-Ning(李宇宁), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2011, 20(11): 110305.
[13] A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity
Wang Yi(王奕), Ye Liu(叶柳), and Fang Bao-Long(方保龙) . Chin. Phys. B, 2011, 20(10): 100313.
[14] Generation of a four-particle entangled state via cross-Kerr nonlinearity
Zhao Li-Fang(赵丽芳), Lai Bo-Hui(赖柏辉), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), Feng Xun-Li(冯勋立), and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2010, 19(9): 094207.
No Suggested Reading articles found!