Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 055202    DOI: 10.1088/1674-1056/23/5/055202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect of inner-surface roughness of conical target on laser absorption and fast electron generation

Wang Huan (王欢)a b, Cao Li-Hua (曹莉华)a b c, Zhao Zong-Qing (赵宗清)d, Yu Ming-Yang (郁明阳)e f, Gu Yu-Qiu (谷渝秋)d, He Xian-Tu (贺贤土)a b c e
a Center for Applied Physics and Technology, Peking University, Beijing 100871, China;
b Key Laboratory of High Energy Density Physics Simulation of the Ministry of Education, Peking University, Beijing 100871, China;
c Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
d Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China;
e Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, China;
f Institute for Theoretical Physics I, Ruhr University, Bochum D-44780, Germany
Abstract  The effect of inner-surface roughness of conical targets on the generation of fast electrons in the laser-cone interaction is investigated using particle-in-cell simulation. It is found that the surface roughness can reduce the fast-electron number (in the energy range E > 1 MeV) and energy, as compared to that from a cone with smooth inner wall. A scaling law for the laser reflectivity based on the vacuum-heating model is derived. Both theory and simulation indicate that laser reflection increases with the height-to-width ratio of the periodic inner surface structure and approaches that of a smooth cone as this ratio becomes zero.
Keywords:  inner-surface roughness of cone target      particle-in-cell simulation      vacuum-heating model      laser reflection  
Received:  21 October 2013      Revised:  26 December 2013      Accepted manuscript online: 
PACS:  52.57.-z (Laser inertial confinement)  
  52.38.-r (Laser-plasma interactions)  
  52.65.Rr (Particle-in-cell method)  
  41.75.-i (Charged-particle beams)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175030, 11175029, 91230205, and 11375032), the National High-Tech ICF Committee of China, the National Basic Research Program of China (Grant Nos. 2008CB717806 and 2011CB808104), and the Science and Technology Foundation of China Academy of Engineering Physics (Grant No. 2011A0102008).
Corresponding Authors:  Cao Li-Hua, He Xian-Tu     E-mail:  cao_lihua@iapcm.ac.cn;xthe@iapcm.ac.cn
About author:  52.57.-z; 52.38.-r; 52.65.Rr; 41.75.-i

Cite this article: 

Wang Huan (王欢), Cao Li-Hua (曹莉华), Zhao Zong-Qing (赵宗清), Yu Ming-Yang (郁明阳), Gu Yu-Qiu (谷渝秋), He Xian-Tu (贺贤土) Effect of inner-surface roughness of conical target on laser absorption and fast electron generation 2014 Chin. Phys. B 23 055202

[1] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626
[2] Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka Y and Zepf M 2001 Nature 412 798
[3] Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A and Mason R J 2009 Phys. Rev. Lett. 102 245001
[4] Sentoku Y, Mima K, Ruhl H, Toyama Y, Kodama R and Cowan T E 2004 Phys. Plasmas 11 3083
[5] Nakamura T, Sakagami H, Hohzaki T, Sakagami H, Johzaki T, Nagatomo H, Mima K and Koga J 2007 Phys. Plasmas 14 103105
[6] Liu H J, Gu Y Q, Zhou W M, Yu J Q, Zhu B, Wu Y C, Shan L Q, Wen X L, Li F, Qian F, Cao L F, Zhang B H and Zheng Z J 2012 Chin. Phys. B 21 055207
[7] Kahaly S, Yadav S K, Wang W M, Sengupta S, Sheng Z M, Das A, Kaw P K and Kumar G R 2008 Phys. Rev. Lett. 101 145001
[8] Cao L H, Yu W, Yu M Y, Xu H, He X T, Gu Y Q, Liu Z J, Li J H and Zheng C Y 2008 Phys. Rev. E 78 036405
[9] Liu Z J, Zheng C Y, Cao L H, Li B and Zhun S P 2006 Acta Phys. Sin. 55 304 (in Chinese)
[10] Kulcsár G, Mawlawi D Al, Budnik F W, Herman P R, Moskovits M, Zhao L and Marjoribanks R S 2000 Phys. Rev. Lett. 84 5149
[11] Lei A L, Tanaka K A, Kodama R, Kumar G R, Nagai K, Norimatsu T, Yabuuchi T and Mima K 2006 Phys. Rev. Lett. 96 255006
[12] Murnane M M, Kapteyn H C, Gordon S P, Bokor J, Glytsis E N and Falcone R W 1993 Appl. Phys. Lett. 62 1068
[13] Cao L H, Gu Y Q, Zhao Z Q, Cao L F, Huang W Z, Zhou W M, He X T, Yu Wei and Yu M Y 2010 Phys. Plasmas 17 043103
[14] Cao L, Chen M, Zhao Z, Cai H, Wu S, Gu Y, Yu W, Yu M Y and He X T 2011 Phys. Plasmas 18 054501
[15] VanWoerkom L, Akli K U, Bartal T, Beg F N, Chawla S, Chen C D, Chowdhury E, Freeman R R, Hey D, Key M H, King J A, Link A, Ma T, MacKinnon A J, MacPhee A G, Offermann D, Ovchinnikov V, Patel P K, Schumacher D W, Stephens R B and Tsui Y Y 2008 Phys. Plasmas 15 056304
[16] Micheau S, Debayle A, d'Humières E, Honrubia J J, Qiao B, Zepf M, Borghesi M and Geissler M 2010 Phys. Plasmas 17 122703
[17] Chrisman B, Sentoku Y and Kemp A J 2008 Phys. Plasmas 15 056309
[18] Zhou C T, He X T and Yu M Y 2008 Appl. Phys. Lett. 92 151502
[19] Winterberg F 2004 Phys. Plasmas 11 3955
[20] King J A, Akli K U, Freeman R R, Green J, Hatchett S P, Hey D, Jamangi P, Key M H, Koch J, Lancaster K L, Ma T, MacKinnon A J, MacPhee A, Norreys P A, Patel P K, Phillips T, Stephens R B, Theobald W, Town R P J, Van Woerkom L, Zhang B and Beg F N 2009 Phys. Plasmas 16 020701
[21] Liu F, Lin X X, Liu B C, Ding W J, Du F, Li Y T, Ma J L, Liu X L, Sheng Z M, Chen L M, Lu X, Dong Q L, Wang W M, Wang Z H, Wei Z Y and Zhang J 2012 Phys. Plasmas 19 013103
[22] Wang W M, Sheng Z M and Zhang J 2008 Phys. Plasmas 15 030702
[23] Hu G Y, Lei A L, Wang J W, Huang L G, Wang W T, Wang X, Xu Y, Shen B F, Liu J S, Yu W, Li R X and Xu Z Z 2010 Phys. Plasmas 17 083102
[24] Ruhl H, Bonitz M and Semkat D 2006 Introduction to Computational Methods in Many Particle Body Physics (New Jersey: Rinton Press)
[25] Brunel F 1987 Phys. Rev. Lett. 59 52
[26] Gibbon P 2005 Short Pulse Laser Interactions with Matter (London: Imperial College Press) pp. 158-161
[27] Rousse A, Rischel C and Gauthier J C 2001 Rev. Mod. Phys. 73 17
[28] Murnane M M, Kapteyn C, Rosen M and Falcone R W 1991 Science 251 531
[29] Kieffer J C, Chaker M, Matte J P, Pépin H, Côté C Y, Beaudoin Y, Johnston T W, Chien C Y, Coe S, Mourou G and Peyrusse O 1993 Phys. Fluids B 5 2676
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[3] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[4] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[5] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[6] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[7] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[8] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[9] Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge
Sun Ji-Zhong(孙继忠), Li Xian-Tao(李现涛), Bai Jing(白净), and Wang De-Zhen(王德真) . Chin. Phys. B, 2012, 21(5): 055205.
[10] Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization
Luo Mu-Hua(罗牧华) and Zhang Qiu-Ju(张秋菊). Chin. Phys. B, 2011, 20(8): 085201.
[11] Particle-in-cell investigation on the resonant absorption of a plasma surface wave
Lan Chao-Hui(蓝朝晖) and Hu Xi-Wei(胡希伟) . Chin. Phys. B, 2011, 20(10): 105202.
[12] Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal
Qi Li-Mei(亓丽梅), Yang Zi-Qiang(杨梓强), Lan Feng(兰峰), Gao Xi(高喜), and Li Da-Zhi(李大治). Chin. Phys. B, 2010, 19(3): 034210.
[13] Comparative research on three types of coaxial slow wave structures
Xiao Ren-Zhen(肖仁珍), Liu Guo-Zhi(刘国治), and Chen Chang-Hua(陈昌华). Chin. Phys. B, 2008, 17(10): 3807-3811.
No Suggested Reading articles found!