Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 054203    DOI: 10.1088/1674-1056/23/5/054203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Correspondence normalized ghost imaging on compressive sensing

Zhao Sheng-Mei, Zhuang Peng
Institute of Signal Processing & Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale “double-slit” image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale “lena” object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using GI and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale “double-slit” object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time.
Keywords:  ghost imaging      compressive sensing      time-correspondence      normalizing  
Received:  21 August 2013      Revised:  22 October 2013      Published:  15 May 2014
PACS:  42.50.Ar  
  42.30.Wb (Image reconstruction; tomography)  
  42.25.Kb (Coherence)  
  42.30.Va (Image forming and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61271238), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), and the University Natural Science Research Foundation of Jiangsu Province, China (Grant No. 11KJA510002).
Corresponding Authors:  Zhao Sheng-Mei     E-mail:  zhaosm@njupt.edu.cn
About author:  42.50.Ar; 42.30.Wb; 42.25.Kb; 42.30.Va

Cite this article: 

Zhao Sheng-Mei, Zhuang Peng Correspondence normalized ghost imaging on compressive sensing 2014 Chin. Phys. B 23 054203

[1] Klyshko D N 1988 Photons and Nonlinear Optics (New York: Gordon and Breach Science)
[2] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[3] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 3600
[4] Abouraddy A F, Saleh B E A, Sergienko A V and Teich M C 2001 Phys. Rev. Lett. 87 123602
[5] Zhao S M, Ding J, Dong X L and Zheng B Y 2011 Chin. Phys. Lett. 28 124207
[6] Zhao S M,Yang H, Li Y Q, Cao F, Sheng Y B, Cheng W W and Gong L Y 2013 Opt. Commun. 294 223
[7] Li Y Q, Yang H, Liu J, Gong L Y, Sheng Y B, Cheng W W and Zhao S M 2013 Chin. Opt. Lett. 11 021104
[8] Bennink R S, Benley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[9] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. A 70 013802
[10] Valencia A, Scarcelli G D, Angelo M and Shih Y H 2005 Phys. Rev. Lett. 94 063601
[11] Li H, Chen Z, Xiong J and Zeng G H 2012 Opt. Express 20 2956
[12] Li H, Xiong J and Zeng G H 2011 Opt. Eng. 50 127005
[13] Shapiro J H 2008 Phys. Rev. A 78 061802
[14] Gong W L and Han S S 2010 Phys. Lett. A 374 1005
[15] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[16] Sun B Q, Welsh S S, Edgar M P, Shapiro J H and Padgett M J 2012 Opt. Express 20 16892
[17] Gong W L and Han S S 2012 Phys. Lett. A 376 1519
[18] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[19] Wang H and Han S S 2012 Europhys. Lett. 98 24003
[20] Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S 2013 Appl. Phys. Lett. 101 141123
[21] Gong W L and Han S S 2012 Phys. Lett. A 376 1519
[22] Du J, Gong W L and Han S S 2012 Opt. Lett. 37 1067
[23] Gong W L and Han S S 2012 J. Opt. Soc. Am. A 29 1571
[24] Gong W L and Han S S 2013 Appl. Phys. Lett. 102 021111
[25] Bai X, Li Y Q and Zhao S M 2013 Acta Phys. Sin. 62 044209 (in Chinese)
[26] Luo K H, Huang B Q, Zheng W M and Wu L A 2012 Chin. Phys. Lett. 29 074216
[27] Li M F, ZhangY R, Luo K H, Wu L A and Fan H 2013 Phys. Rev. A 87 033813
[28] Wen J M 2013 J. Opt. Soc. Am. A 29 1906
[29] Bai Y F, Yang W X and Yu X Q 2012 Chin. Phys. B 21 044206
[30] Liu Q, Luo K H, Chen X H and Wu L A 2010 Chin. Phys. B 19 094211
[31] Katkovnik V and Astola J 2012 J. Opt. Soc. Am. A 29 1556
[32] Meyers R E, Deacon K S and Shih Y H 2012 Appl. Phys. Lett. 100 131114
[33] Hardy N D and Shapiro J H 2013 Phys. Rev. A 87 023820
[34] Chen W and Chen X D 2013 Opt. Lett. 38 546
[35] Zhang E F and Dai H Y 2011 Acta Phys. Sin. 60 064209 (in Chinese)
[36] Yang H and Zhao S M 2012 Acta Opt. Sin. 32 243 (in Chinese)
[37] Donoho D L 2006 IEEE Trans. Infor. 52 1289
[38] Candes E J and Wakin M B 2008 IEEE Signal Process. Mag. 25 21, and refrences therein
[39] Koschan A and Abidi M 2008 Digital Color Image Processing (New Jersey: Wiley-Interscience)
[1] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[2] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[3] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[4] Mask-based denoising scheme for ghost imaging
Yang Zhou(周阳), Shu-Xu Guo(郭树旭), Fei Zhong(钟菲), Tian Zhang(张天). Chin. Phys. B, 2019, 28(8): 084204.
[5] Enhancement of spatial resolution of ghost imaging via localizing and thresholding
Yunlong Wang(王云龙), Yingnan Zhou(周英男), Shaoxiong Wang(王少雄), Feiran Wang(王斐然), Ruifeng Liu(刘瑞丰), Hong Gao(高宏), Pei Zhang(张沛), Fuli Li(李福利). Chin. Phys. B, 2019, 28(4): 044202.
[6] Influence of random phase modulation on the imaging quality of computational ghost imaging
Chao Gao(高超), Xiao-Qian Wang(王晓茜), Hong-Ji Cai(蔡宏吉), Jie Ren(任捷), Ji-Yuan Liu(刘籍元), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2019, 28(2): 020201.
[7] Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal
Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯). Chin. Phys. B, 2018, 27(7): 074205.
[8] Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography
Ying Wang(王莹), Qi Liu(刘琦), Jun Wang(王君), Qiong-Hua Wang(王琼华). Chin. Phys. B, 2018, 27(3): 034202.
[9] Ghost images reconstructed from fractional-order moments with thermal light
De-Zhong Cao(曹德忠), Qing-Chen Li(李清晨), Xu-Cai Zhuang(庄绪财), Cheng Ren(任承), Su-Heng Zhang(张素恒), Xin-Bing Song(宋新兵). Chin. Phys. B, 2018, 27(12): 123401.
[10] Visibility enhancement in two-dimensional lensless ghost imaging with true thermal light
Xi-Hao Chen(陈希浩), Ling Yan(燕玲), Wei Wu(吴炜), Shao-Ying Meng(孟少英), Ling-An Wu(吴令安), Zhi-Bin Sun(孙志斌), Chao Wang(王超), Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2017, 26(6): 060702.
[11] Optical encryption scheme based on ghost imaging with disordered speckles
Yu-dong Zhang(张玉东), Sheng-mei Zhao(赵生妹). Chin. Phys. B, 2017, 26(5): 054205.
[12] Reflective ghost imaging free from vibrating detectors
Heng-xing Li(李恒星), Yan-feng Bai(白艳锋), Xiao-hui Shi(施晓辉), Su-qin Nan(南苏琴), Li-jie Qu(屈利杰), Qian Shen(沈倩), Xi-quan Fu(傅喜泉). Chin. Phys. B, 2017, 26(10): 104204.
[13] Lensless ghost imaging through the strongly scattering medium
Zhe Yang(杨哲), Lianjie Zhao(赵连洁), Xueliang Zhao(赵学亮), Wei Qin(秦伟), Junlin Li(李俊林). Chin. Phys. B, 2016, 25(2): 024202.
[14] Piecewise spectrally band-pass for compressive coded aperture spectral imaging
Qian Lu-Lu, Lü Qun-Bo, Huang Min, Xiang Li-Bin. Chin. Phys. B, 2015, 24(8): 080703.
[15] A joint image encryption and watermarking algorithm based on compressive sensing and chaotic map
Xiao Di, Cai Hong-Kun, Zheng Hong-Ying. Chin. Phys. B, 2015, 24(6): 060505.
No Suggested Reading articles found!