Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048402    DOI: 10.1088/1674-1056/23/4/048402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Three-dimensional simulation method of multipactor in microwave components for high-power space application

Li Yuna, Cui Wan-Zhaoa, Zhang Naa, Wang Xin-Boa, Wang Hong-Guangb, Li Yong-Dongb, Zhang Jian-Fengc
a National Key Laboratory of Science and Technology on Space Science, China Academy of Space Technology (Xi'an), Xi'an 710100, China;
b Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
c State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
Abstract  Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the particle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design.
Keywords:  multipactor      numerical method      three-dimensional      high-power      threshold  
Received:  20 March 2013      Revised:  03 June 2013      Accepted manuscript online: 
PACS:  84.32.-y (Passive circuit components)  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  79.20.Ap (Theory of impact phenomena; numerical simulation)  
Fund: Project supported by the National Key Laboratory Foundation, China (Grant No. 9140C530103110C5301).
Corresponding Authors:  Li Yun     E-mail:  genliyun@126.com
About author:  84.32.-y; 52.40.Db; 79.20.Ap

Cite this article: 

Li Yun, Cui Wan-Zhao, Zhang Na, Wang Xin-Bo, Wang Hong-Guang, Li Yong-Dong, Zhang Jian-Feng Three-dimensional simulation method of multipactor in microwave components for high-power space application 2014 Chin. Phys. B 23 048402

[1] Vaughan J R M 1988 Multipactor. IEEE Trans. Electron Dev. ED-35 1172
[2] Zhu F, Proch D and Hao J K 2005 Chin. Phys. 14 494
[3] Lu Q L, Zhou Z Y, Shi L Q and Zhao G Q 2005 Chin. Phys. 14 1465
[4] Woode A and Petit J 1990 ESA Journal-European Space Agency 14 467
[5] Rozario N and Lenzing H 1994 IEEE Trans. MTT 42 558
[6] Vahedi V and Surendra M 1995 Comput. Phys. Commum. 87 179
[7] Fan J Q and Hao J H 2011 Chin. Phys. B 20 068402
[8] Liu Z L, Zhang X F, Yao K L, Wei H L and Huang Y M 2004 Chin. Phys. 13 2115
[9] ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test. ESA Publication Division, the Netherlands, ECSS-20-01A
[10] Vicente C, Mattes M, Wolk D, Mottet B, Hartnagel H L, Mosig J R and Raboso D 2005 Proc. IEEE MTT-S Int. Microw. Symp. Dig. p. 1055
[11] Kossyi I A, Luk'yanchikov G S, Semenov V E, Zharova N A, Lisak M and Puech J 2010 Appl. Phys. 43 345206
[12] Frotanpour A, Dadashzadeh G, Shahabadi M and Gimeno B 2011 IEEE Trans. Electron Dev. 58 876
[13] Rasch J, Semenov V E, Rakova E, Anderson D, Johansson J F, Lisak M and Puech J 2011 IEEE Trans. Plasma Sci. 39 1786
[14] Semenov V E, Rakova E I, Sazontov A G, Nefedov I M, Pozdnyakova V I, Shereshevskii I A, Anderson D, Lisak M and Puech J 2009 J. Phys. D: Appl. Phys. 42 205204
[15] Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y, Zhu X X and Zhang Y P 2009 J. Appl. Phys. 105 123305
[16] Hockney R W and Eastwood J W 1981 Computer Simulation Using Particles (New York: McGraw-Hill)
[17] Eastwood J W 1991 Comput. Phys. Commun. 64 252
[18] Goplen B, Ludeking L, Smithe D and Warren G 1995 Comput. Phys. Commun. 87 54
[19] Liu G Z and Shao H 2003 Chin. Phys. 12 204
[20] Liu L, Li Y D, Wang R, Cui W Z and Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)
[21] Kossyi I A, Luk'yanchikov G S, Semenov V E, Zharova N A, Anderson D, Lisak M and Puech J 2010 J. Phys. D: Appl. Phys. 43 345206
[22] Semenov V E, Zharova N, Udiljak R, Anderson D, Lisak M and Puech J 2007 Phys. Plasmas 14 033509
[23] Li Y and Cui W Z 2012 Proc. 42nd European Microwave Conference, 29 October, 2012, Amsterdam, The Netherlands, p. 920
[24] Taflove A and Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. (Norwood: Artech House)
[25] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[26] Zhang H B, Hu X C, Wang R, Cao M, Zhang N and Cui W Z 2012 Rev. Sci. Instrum. 83 066105
[27] Pimpec F L, Kirby R E, King F and Pivi M 2005 Nucl. Instrum. Methods Phys. Res. A 551 187
[1] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[2] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[3] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[4] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[5] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[6] High-precision three-dimensional Rydberg atom localization in a four-level atomic system
Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(5): 053202.
[7] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[8] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[9] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[10] A fast and precise three-dimensional measurement system based on multiple parallel line lasers
Yao Wang(王尧) and Bin Lin(林斌). Chin. Phys. B, 2021, 30(2): 024201.
[11] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[12] Probing time delay of strong-field resonant above-threshold ionization
Shengliang Xu(徐胜亮), Qingbin Zhang(张庆斌), Cheng Ran(冉成), Xiang Huang(黄湘), Wei Cao(曹伟), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(1): 013202.
[13] Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields
Peng-Cheng Li(李鹏程), Shih-I Chu. Chin. Phys. B, 2020, 29(8): 083202.
[14] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[15] A method for calibrating the confocal volume of a confocal three-dimensional micro-x-ray fluorescence setup
Peng Zhou(周鹏), Xin-Ran Ma(马欣然), Shuang Zhang(张爽), Tian-Xi Sun(孙天希), Zhi-Guo Liu(刘志国). Chin. Phys. B, 2020, 29(2): 020702.
No Suggested Reading articles found!