Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048401    DOI: 10.1088/1674-1056/23/4/048401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Computation of the locus crossing point location of MC circuit

Liu Hai-Jun, Li Zhi-Wei, Bu Kai, Sun Zhao-Lin, Nie Hong-Shan
College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  In this paper, the crossing point property of the i-v hysteresis curve in a memristor-capacitor (MC) circuit is analyzed. First, the ideal passive memristor on the crossing point property of i-v hysteresis curve is studied. Based on the analysis, the analytical derivation with respect to the crossing point location of MC circuit is given. Then the example of MC with linear memristance-versus-charge state map is demonstrated to discuss the drift property of cross-point location, caused by the frequency and capacitance value.
Keywords:  memristor      memristive system      crossing point      pinched hysteresis loop  
Received:  03 September 2013      Revised:  18 September 2013      Accepted manuscript online: 
PACS:  84.30.Bv (Circuit theory)  
  85.35.-p (Nanoelectronic devices)  
  84.32.-y (Passive circuit components)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61171017).
Corresponding Authors:  Liu Hai-Jun     E-mail:  liuhaijun@nudt.edu.cn
About author:  84.30.Bv; 85.35.-p; 84.32.-y

Cite this article: 

Liu Hai-Jun, Li Zhi-Wei, Bu Kai, Sun Zhao-Lin, Nie Hong-Shan Computation of the locus crossing point location of MC circuit 2014 Chin. Phys. B 23 048401

[1] Salaoru I, Khiat A, Li Q J, Berdan R, Papavassiliou C, Toumazou C and Prodromakis T Acs. Nano. to be published
[2] Ligang G, Alibart F and Strukov D B 2013 IEEE T. Nanotechnol. 12 115
[3] Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 Nat. Mater. 12 114
[4] Li Z W, Liu H J and Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese)
[5] Fang X D, Tang Y H and Wu J J 2012 Chin. Phys. B 21 098901
[6] Tian X B and Xu H 2013 Chin. Phys. B 22 088501
[7] Wang W D, Yu Q, Xu C X and Cui Y H 2009 International Conference on Communications, Circuits and Systems, July 23-25, 2009, Milpitas, California, USA, p. 969
[8] Bao B C, Xu J P, Zhou G H, Ma Z H and Zou L 2011 Chin. Phys. B 20 120502
[9] Bao B C, Shi G D, Xu J P, Liu Z and Pan S H 2011 Sci. China: Technol. Sci. 54 1
[10] Joglekar Y N and Wolf S J 2009 Eur. J. Phys. 30 661
[11] Slipko V A, Pershin Y V and Ventra M D 2013 Phys. Rev. E 87 042103
[12] Song D H, Lü M F, Reng X, Li M M and Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese)
[13] Leon C 2003 P. IEEE 9 1830
[14] Biolek Z, Biolek D and Biolkova V 2012 IEEE T. Circuits-II 59 607
[15] Biolek D, Biolek Z and Biolkova V 2011 Electron. Lett. 47 5
[16] Leon C 2011 Appl. Phys. A 102 765
[17] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[1] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
[2] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[3] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[4] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[5] A method of generating random bits by using electronic bipolar memristor
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮). Chin. Phys. B, 2020, 29(4): 048505.
[6] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[7] Memristor-based vector neural network architecture
Hai-Jun Liu(刘海军), Chang-Lin Chen(陈长林), Xi Zhu(朱熙), Sheng-Yang Sun(孙盛阳), Qing-Jiang Li(李清江), Zhi-Wei Li(李智炜). Chin. Phys. B, 2020, 29(2): 028502.
[8] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[9] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
[10] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[11] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[12] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[13] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
[14] A generalized model of TiOx-based memristive devices andits application for image processing
Jiangwei Zhang(张江伟), Zhensen Tang(汤振森), Nuo Xu(许诺), Yao Wang(王耀), Honghui Sun(孙红辉), Zhiyuan Wang(王之元), Liang Fang(方粮). Chin. Phys. B, 2017, 26(9): 090502.
[15] Attempt to generalize fractional-order electric elements to complex-order ones
Gangquan Si(司刚全), Lijie Diao(刁利杰), Jianwei Zhu(朱建伟), Yuhang Lei(雷妤航), Yanbin Zhang(张彦斌). Chin. Phys. B, 2017, 26(6): 060503.
No Suggested Reading articles found!