Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048203    DOI: 10.1088/1674-1056/23/4/048203
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid

Sadegh Khalilia, Saeed Dinarvandb, Reza Hosseinib, Hossein Tamimc, Ioan Popd
a Young Researchers and Elite Club, Saveh Branch, Islamic Azad University, Saveh, Iran;
b Mechanical Engineering Department, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran;
c Department of Mechanical Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran;
d Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
Abstract  In this article, the unsteady magnetohydrodynamic (MHD) stagnation point flow and heat transfer of a nanofluid over a stretching/shrinking sheet is investigated numerically. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations which are then solved numerically using the fourth-order Runge-Kutta method with shooting technique. The ambient fluid velocity, stretching/shrinking velocity of sheet, and the wall temperature are assumed to vary linearly with the distance from the stagnation point. To investigate the influence of various pertinent parameters, graphical results for the local Nusselt number, the skin friction coefficient, velocity profile, and temperature profile are presented for different values of the governing parameters for three types of nanoparticles, namely copper, alumina, and titania in the water-based fluid. It is found that the dual solution exists for the decelerating flow. Numerical results show that the extent of the dual solution domain increases with the increases of velocity ratio, magnetic parameter, and permeability parameter whereas it remains constant as the value of solid volume fraction of nanoparticles changes. Also, it is found that permeability parameter has a greater effect on the flow and heat transfer of a nanofluid than the magnetic parameter.
Keywords:  nanofluid      Navier-Stokes equations      MHD      dual solutions      porous media  
Received:  19 June 2013      Revised:  13 October 2013      Accepted manuscript online: 
PACS:  82.70.-y (Disperse systems; complex fluids)  
  47.10.ad (Navier-Stokes equations)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  02.60.Cb (Numerical simulation; solution of equations)  
Corresponding Authors:  Saeed Dinarvand     E-mail:  dinarvand@yahoo.com,dinarvand@aut.ac.ir
About author:  82.70.-y; 47.10.Ad; 52.30.Cv; 02.60.Cb

Cite this article: 

Sadegh Khalili, Saeed Dinarvand, Reza Hosseini, Hossein Tamim, Ioan Pop Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid 2014 Chin. Phys. B 23 048203

[1] Moore F K (NACA) TN-2471[1951-9]
[2] Lin C C 1956 Proc. 9th Int. Congr. Appl. Mech., September 5-13, 1956, Brussels, Belgium, p. 155
[3] Wang C Y 1990 Q. Appl. Math. 48 601
[4] Bachok N, Ishak A and Pop I 2012 Int. J. Heat Mass Transfer 55 2102
[5] Suali M, Nik Long N M A and Ariffin N M 2012 J. Appl. Math. 2012
[6] Fang T G, Zhang J and Zhong Y F 2011 Chin. Phys. Lett. 28 124707
[7] Rohni A M, Ahmad S and Pop I 2012 Int. J. Heat Mass Transfer 55 1888
[8] Shahzad A, Ali R and Khan M 2012 Chin. Phys. Lett. 29 084705
[9] Wang C Y 2008 Int. J. Non-Linear Mech. 43 377
[10] Dinarvand S, Hosseini R, Damangir E and Pop I 2013 Meccanica 48 643
[11] Kamali R and Binesh A R 2010 Int. Commun. Heat Mass Transfer 37 1153
[12] Choi S U S 1995 IMECE, Novamber 12-17, 1995, San Francisco, USA p. 99
[13] Khanafer K, Vafai K and Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639
[14] Tiwari R J and Das M K 2007 Int. J. Heat Mass Transfer 50 2002
[15] Oztop H F and Abu-Nada E 2008 Int. J. Heat Fluid Flow 29 1326
[16] Zhou X F and Gao L 2007 Chin. Phys. 16 2028
[17] Tamim H, Dinarvand S, Hosseini R, Khalili S and Pop I 2013 Proc. Inst. Mech. Eng. E J. Process Mech. Eng. (published online)
[18] Dinarvand S, Abbassi A, Hosseini R and Pop I 2012 Thermal Science, first issue, p. 165
[19] Khalili S, Khalili A, Kafashian S and Abbassi A 2013 J. Porous Media 16 967
[20] Das S K, Choi S U S, Yu W and Pradeep T 2007 Nanofluids: Science and Technology (New Jersey: John Wiley & Sons) p. 1
[21] Kakacç S and Pramuanjaroenkij A 2009 Int. J. Heat Mass Transfer 52 3187
[22] Eagen J, Rusconi R, Piazza R and Yip S 2010 ASME J. Heat Transfer 132 102402
[23] Lee J H, Lee S H, Choi C J, Jang S P and Choi S U S 2010 Int. J. Micro-Nano Scale Transport 1 269
[24] Fan J and Wang L 2011 ASME J. Heat Transfer 133 040801
[25] Takhar H S and Ram P C 1994 Int. Commun. Heat Mass Transfer 21 371
[26] Raptis A, Massalas C and Tzivanidis G 1982 Phys. Lett. A 90 288
[27] Fang T and Zhang J 2009 Commun. Nonlinear. Sci. Numer. Simul. 14 2853
[28] Fang T G, Zhang J and Yao S S 2010 Chin. Phys. Lett. 27 4702
[29] Khalili S, Dinarvand S, Hosseini R, Saber M and Pop I 2013 Proc. Inst. Mech. Eng. E J. Process Mech. Eng. (in press)
[30] Nakayama A 1995 PC-Aided Numerical Heat Transfer and Convective Flow (Tokyo: CRC Press) p. 1
[31] Nield D A and Bejan A 2013 Convection in Porous Media, 4th edn. (New York: Springer) p. 1
[32] Ingham D B and Pop I 1998 Transport Phenomena in Porous Media (Oxford: Pergamon Press) p. 1
[33] Bachok N, Ishak A and Pop I 2012 Int. J. Heat Mass Transfer 55 6499
[34] Brinkman H C 1952 J. Chem. Phys. 20 571
[35] Postelnicu A and Pop I 2011 Appl. Math. Comput. 217 4359
[36] Roşca A V and Pop I 2013 Int. J. Heat Mass Transfer 60 355
[1] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[2] Frequency-dependent reflection of elastic wave from thin bed in porous media
Hong-Xing Li(李红星), Chun-Hui Tao(陶春辉), Cai Liu(刘财), Guang-Nan Huang(黄光南), Zhen-An Yao(姚振岸). Chin. Phys. B, 2020, 29(6): 064301.
[3] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[4] Effect of patterned hydrodynamic slip on electromagnetohydrodynamic flow in parallel plate microchannel
Chun-Hong Yang(杨春红) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2020, 29(11): 114101.
[5] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[6] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[7] Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera
Guannan Liu(刘冠楠), Dong Liu(刘冬). Chin. Phys. B, 2018, 27(5): 054401.
[8] Theoretical studies and molecular dynamics simulations on ion transport properties in nanochannels and nanopores
Ke Xiao(肖克), Dian-Jie Li(李典杰), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2018, 27(2): 024702.
[9] Analytical studies on the evolution processes of rarefied deuterium plasma shell Z-pinch by PIC and MHD simulations
Cheng Ning(宁成), Xiao-Qiang Zhang(张小强), Yang Zhang(张扬), Shun-Kai Sun(孙顺凯), Chuang Xue(薛创), Zhi-Xing Feng(丰志兴), Bai-Wen Li(李百文). Chin. Phys. B, 2018, 27(2): 025207.
[10] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[11] Experimental study and theoretical analysis of fluid resistance in porous media of glass spheres
Tong Wang(王彤), Kun-Can Zheng(郑坤灿), Yu-Peng Jia(贾宇鹏), Cheng-Lu Fu(付承鹭), Zhi-Jun Gong(龚志军), Wen-Fei Wu(武文斐). Chin. Phys. B, 2017, 26(7): 074701.
[12] Performance of thermoelectric generator with graphene nanofluid cooling
Jiao-jiao Xing(邢姣娇), Zi-hua Wu(吴子华), Hua-qing Xie(谢华清), Yuan-yuan Wang(王元元), Yi-huai Li(李奕怀), Jian-hui Mao(毛建辉). Chin. Phys. B, 2017, 26(10): 104401.
[13] Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects
Tanzila Hayat, S Nadeem. Chin. Phys. B, 2016, 25(11): 114701.
[14] Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer
Yang Juan-Cheng, Li Feng-Chen, Cai Wei-Hua, Zhang Hong-Na, Yu Bo. Chin. Phys. B, 2015, 24(8): 084401.
[15] Analysis for flow of Jeffrey fluid with nanoparticles
T. Hayat, Sadia Asad, A. Alsaedi. Chin. Phys. B, 2015, 24(4): 044702.
No Suggested Reading articles found!