Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047804    DOI: 10.1088/1674-1056/23/4/047804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement in a-plane GaN crystalline quality using wet etching method

Cao Rong-Tao, Xu Sheng-Rui, Zhang Jin-Cheng, Zhao Yi, Xue Jun-Shuai, Ha Wei, Zhang Shuai, Cui Pei-Shui, Wen Hui-Juan, Chen Xing
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Nonpolar (112 0) GaN films are grown on the etched a-plane GaN substrates via metalorganic vapor phase epitaxy. High-resolution X-ray diffraction analysis shows great decreases in the full width at half maximum of the samples grown on etched substrates compared with those of the sample without etching, both on-axis and off-axis, indicating the reduced dislocation densities and improved crystalline quality of these samples. The spatial mapping of the E2 (high) phonon mode demonstrates the smaller line width with a black background in the wing region, which testifies the reduced dislocation densities and enhanced crystalline quality of the epitaxial lateral overgrowth areas. Raman scattering spectra of the E2 (high) peaks exhibit in-plane compressive stress for all the overgrowth samples, and the E2 (high) peaks of samples grown on etched substrates shift toward the lower frequency range, indicating the relaxations of in-plane stress in these GaN films. Furthermore, room temperature photoluminescence measurement demonstrates a significant decrease in the yellow-band emission intensity of a-plane GaN grown on etched templates, which also illustrates the better optical properties of these samples.
Keywords:  nonpolar GaN      wet etching      metal-organic chemical vapor deposition      crystalline quality  
Received:  04 May 2013      Revised:  22 August 2013      Published:  15 April 2014
PACS:  78.55.Cr (III-V semiconductors)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61204006), the Fundamental Research Funds for the Central Universities, China (Grant No. K50511250002), and the National Key Science & Technology SpecialProject, China (Grant No. 2008ZX01002-002).
Corresponding Authors:  Zhang Jin-Cheng     E-mail:  jchzhang@xidian.edu.cn
About author:  78.55.Cr; 81.15.Kk

Cite this article: 

Cao Rong-Tao, Xu Sheng-Rui, Zhang Jin-Cheng, Zhao Yi, Xue Jun-Shuai, Ha Wei, Zhang Shuai, Cui Pei-Shui, Wen Hui-Juan, Chen Xing Improvement in a-plane GaN crystalline quality using wet etching method 2014 Chin. Phys. B 23 047804

[1] Xu S R, Hao Y, Zhang J C, Xue X Y, Li P X, Li J T, Lin Z Y, Liu Z Y, Ma J C, He Q and Lü L 2011 Chin. Phys. B 20 107802
[2] Zhang J F, Xu S R, Zhang J C and Hao Y 2011 Chin. Phys. B 20 057801
[3] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
[4] Cho Y S, Sun Q, Lee I H, Ko T S, Yerino C D, Han J, Kong B H, Cho H K and Wang S 2008 Appl. Phys. Lett. 93 111904
[5] Waltereit P, Brandt O, Trampert A, Grahn H T, Yang J W and Khan M A 2000 Nature 406 865
[6] Liu R, Bell A, Ponce F A, Chen C Q, Yang J W and Khan M A 2005 Appl. Phys. Lett. 86 021908
[7] Wu Z H, Fischer A M, Ponce F A, Bastek B, Christen J, Wernicke T, Weyers M and Kneissl M 2008 Appl. Phys. Lett. 92 171904
[8] Craven M D, Lim S H, Wu F, Speck J S and DenBaars S P 2002 Appl. Phys. Lett. 81 1201
[9] Haskell B A, Wu F, Craven M D, Matsuda S and Fini P T 2003 Appl. Phys. Lett. 83 644
[10] Johnston C F, Kappers M J, Moram M A, Hollander J L and Humphreys C L 2009 J. Cryst. Growth 311 3295
[11] Hollander J L, Kappers M J, McAleese C and Humphreys C 2008 Appl. Phys. Lett. 92 101104
[12] Xu S R, Zhang J C, Yang L A, Zhou X W, Cao Y R, Zhang J F, Xue J S, Liu Z Y, Ma J C, Bao F and Hao Y 2011 J. Cryst. Growth 327 94
[13] Stocker D A, Schubert E F and Redwing J M 1998 Appl. Phys. Lett. 73 2654
[14] Na S I, Ha G Y, Han D S, Kim S S, Kim J Y, Lim J H, Kim D J, Min K I and Park S J 2006 IEEE. Photon. Technol. Lett. 18 14
[15] Youtsey C, Adesida I, Romano L T and Bulman G 1998 Appl. Phys. Lett. 72 560
[16] Youtsey C, Romano L T and Adesida I 1998 Appl. Phys. Lett. 73 797
[17] Rouviere J L, Weyher J L, Seelmann-Eggbert M and Porowski S 1998 Appl. Phys. Lett. 73 668
[18] M. Sano and M. Aoki 1976 Jpn. J. Appl. Phys. 15 1943
[19] T. Sasaki and S. Zembutsu 1987 J. Appl. Phys. 61 2533
[20] Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H and Gu W P 2009 J. Cryst. Growth 311 3622
[21] Mukai T, Takekawa K and Nakamura S 1998 Jpn. J. Appl. Phys., Part 2 37 L839
[22] Chakraborty A, Kim K C, Wu F, Speck J S, Denbaars S P and Mishr U K 2006 Appl. Phys. Lett. 89 041903
[23] Yan F W, Gao H Y, Zhang H X, Wang G H, Zeng Y P, Yan J C, Wang J X, Zeng Y P and Li J M 2007 J. Appl. Phys. 101 023506
[24] Mickevi'eius J, Aleksiejunas R, Shur M S, Sakalauskas S, Tamulaitis G, Fareed Q and Gaska R 2005 Appl. Phys. Lett. 86 041910
[25] Neugebauera J and Walle C V 1996 Appl. Phys. Lett. 69 503
[1] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[2] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[3] Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
Zesheng Ji(吉泽生), Lianshan Wang(汪连山), Guijuan Zhao(赵桂娟), Yulin Meng(孟钰淋), Fangzheng Li(李方政), Huijie Li(李辉杰), Shaoyan Yang(杨少延), Zhanguo Wang(王占国). Chin. Phys. B, 2017, 26(7): 078102.
[4] Silica-based microcavity fabricated by wet etching
H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平). Chin. Phys. B, 2017, 26(5): 054211.
[5] Self-aligned-gate AlGaN/GaN heterostructure field-effect transistor with titanium nitride gate
Jia-Qi Zhang(张家琦), Lei Wang(王磊), Liu-An Li(李柳暗), Qing-Peng Wang(王青鹏), Ying Jiang(江滢), Hui-Chao Zhu(朱慧超), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(8): 087308.
[6] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie, Li Ming, Zhao Qian, Gu Wen-Wen, Lau Kei-May. Chin. Phys. B, 2015, 24(8): 087305.
[7] Normally-off metamorphic AlInAs/AlInAs HEMTs on Si substrates grown by MOCVD
Huang Jie, Li Ming, Lau Kei-May. Chin. Phys. B, 2015, 24(7): 078102.
[8] Effect of pressure on the semipolar GaN (10-11) growth mode on patterned Si substrates
Liu Jian-Ming, Zhang Jie, Lin Wen-Yu, Ye Meng-Xin, Feng Xiang-Xu, Zhang Dong-Yan, Steve Ding, Xu Chen-Ke, Liu Bao-Lin. Chin. Phys. B, 2015, 24(5): 057801.
[9] High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition
Wang Lian-Kai, Liu Ren-Jun, Lü You, Yang Hao-Yu, Li Guo-Xing, Zhang Yuan-Tao, Zhang Bao-Lin. Chin. Phys. B, 2015, 24(1): 018102.
[10] Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal-organic chemical vapor deposition
Xing Hai-Ying, Xu Zhang-Cheng, Cui Ming-Qi, Xie Yu-Xin, Zhang Guo-Yi. Chin. Phys. B, 2014, 23(10): 107803.
[11] Enhanced performance of InGaN/GaN multiple quantum well solar cells with double indium content
Zhao Bi-Jun, Chen Xin, Ren Zhi-Wei, Tong Jin-Hui, Wang Xing-Fu, Li Dan-Wei, Zhuo Xiang-Jing, Zhang Jun, Yi Han-Xiang, Li Shu-Ti. Chin. Phys. B, 2013, 22(8): 088401.
[12] Growth and characterization of GaAs/InxGa1-xAs/GaAs axial nanowire heterostructures with symmetrical heterointerfaces
Lü Xiao-Long, Zhang Xia, Liu Xiao-Long, Yan Xin, Cui Jian-Gong, Li Jun-Shuai, Huang Yong-Qing, Ren Xiao-Min. Chin. Phys. B, 2013, 22(6): 066101.
[13] Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering
Wang Dang-Hui, Xu Sheng-Rui, Hao Yue, Zhang Jin-Cheng, Xu Tian-Han, Lin Zhi-Yu, Zhou Hao, Xue Xiao-Yong. Chin. Phys. B, 2013, 22(2): 028101.
[14] Rear-surface light intensification caused by Hertzian-conical crack in 355-nm silica optics
Zhang Chun-Lai, Yuan Xiao-Dong, Xiang Xia, Wang Zhi-Guo, Liu Chun-Ming, Li Li, He Shao-Bo, Zu Xiao-Tao. Chin. Phys. B, 2012, 21(9): 094213.
[15] Impact of nitrogen doping on growth and hydrogen impurity incorporation of thick nanocrystalline diamond films
Gu Li-Ping, Tang Chun-Jiu, Jiang Xue-Fan. Chin. Phys. B, 2011, 20(5): 058104.
No Suggested Reading articles found!