Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047101    DOI: 10.1088/1674-1056/23/4/047101

Structural, electronic, optical, elastic properties and Born effective charges of monoclinic HfO2 from first-principles calculations

Liu Qi-Juna, Zhang Ning-Chaoa, Liu Fu-Shenga, Liu Zheng-Tangb
a Bond and Band Engineering Group, Institute of High Temperature and High Pressure Physics, School of Physical Science and Technology,Southwest Jiaotong University, Chengdu 610031, China;
b State Key Laboratory of Solidification Processing, School of Materials Science and Engineering,Northwestern Polytechnical University, Xi'an 710072, China
Abstract  First-principles calculations of structural, electronic, optical, elastic, mechanical properties, and Born effective charges of monoclinic HfO2 are performed with the plane-wave pseudopotential technique based on the density-functional theory. The calculated structural properties are consistent with the previous theoretical and experimental results. The electronic structure reveals that monoclinic HfO2 has an indirect band gap. The analyses of density of states and Mulliken charges show mainly covalent nature in Hf-O bonds. Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function, and optical conductivity each as a function of photon energy are calculated and show an optical anisotropy. Moreover, the independent elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, compressibility, Lamé constant, sound velocity, Debye temperature, and Born effective charges of monoclinic HfO2 are obtained, which may help to understand monoclinic HfO2 for future work.
Keywords:  density-functional theory      optical properties      elastic constants      monoclinic HfO2  
Received:  30 July 2013      Revised:  27 September 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
  62.20.dq (Other elastic constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11347199, 11072225, 10874141, and 10974160), the Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20130184120028), the National Basic Research Program of China (Grant No. 2011CB808201), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. SWJTU112T23 and 2682013CX054).
Corresponding Authors:  Liu Qi-Jun     E-mail:
About author:  71.15.Mb; 71.22.+i; 62.20.dq

Cite this article: 

Liu Qi-Jun, Zhang Ning-Chao, Liu Fu-Sheng, Liu Zheng-Tang Structural, electronic, optical, elastic properties and Born effective charges of monoclinic HfO2 from first-principles calculations 2014 Chin. Phys. B 23 047101

[1] Zheng X H, Huang A P, Yang Z C, Xiao Z S, Wang M and Cheng G A 2011 Acta Phys. Sin. 60 017702 (in Chinese)
[2] Monaghan S, Hurley P K, Cherkaoui K, Negara M A and Schenk A 2009 Solid State Electron. 53 438
[3] Xiong K and Robertson J 2005 Microelectron. Eng. 80 408
[4] Zhu S Y, Xu J P, Wang L S and Huang Y 2013 Chin. Phys. B 22 097301
[5] Xiong K, Robertson J, Gibson M C and Clark S J 2005 Appl. Phys. Lett. 87 183505
[6] Wang J, Li H P and Stevens R 1992 J. Mater. Sci. 27 5397, and the references therein
[7] Wang J, Ponton C B and Marouis P M 1994 J. Mater. Sci. 29 3577
[8] Ohtaka O, Fukui H, Kunisada T, Fujisawa T, Funakoshi K, Utsumi W, Irifune T, Kuroda K and Kikegawa T 2001 J. Am. Ceram. Soc. 84 1369
[9] Franta D, Ohlídal I, Nečas D, Vižd'a F, Caha O, Hasoñ M and Pokorný P 2011 Thin Solid Films 519 6085
[10] Aarik J, Mändar H, Kirm M and Pung L 2004 Thin Solid Films 466 41
[11] Mergia K, Liedtke V, Speliotis Th, Apostolopoulos G and Messoloras S 2009 Adv. Mater. Res. 59 87
[12] Lowther J E, Dewhurst J K, Leger J M and Haines J 1999 Phys. Rev. B 60 14485
[13] Mirgorodsky A P and Quintard P E 1999 J. Am. Ceram. Soc. 82 3121
[14] Robertson J 2006 Rep. Prog. Phys. 69 327
[15] Pereira L, Barquinha P, Fortunato E and Martins R 2006 Mater. Sci. Semicond. Proc. 9 1125
[16] Chen W, Sun Q Q, Ding S J, Zhang D W and Wang L K 2006 Appl. Phys. Lett. 89 152904
[17] Hou Z F, Gong X G and Li Q 2008 J. Phys.: Condens. Matter 20 135206
[18] Chen T J and Kuo C L 2011 J. Appl. Phys. 110 064105
[19] Terki R, Bertrand G, Aourag H and Coddet C 2008 Mater. Lett. 62 1484
[20] Caravaca M A and Casali R A 2005 J. Phys.: Condens. Matter 17 5795
[21] Zhao X and Vanderbilt D 2002 Phys. Rev. B 65 233106
[22] Perevalov T V, Gritsenko V A, Erenburg S B, Badalyan A M, Wong H and Kim C W 2007 J. Appl. Phys. 101 053704
[23] Leger J M, Atouf A, Tomaszewski P E and Pereira A S 1993 Phys. Rev. B 48 93
[24] Kang J, Lee E C and Chang K J 2003 Phys. Rev. B 68 054106
[25] Jaffe J E, Bachorz R A and Gutowski M 2005 Phys. Rev. B 72 144107
[26] Tang C and Ramprasad R 2010 Phys. Rev. B 81 161201(R)
[27] Kirsch P D, Quevedo-Lopez M A, Li H J, Senzaki Y, Peterson J J, Song S C, Krishnan S A, Moumen N, Barnett J, Bersuker G, Hung P Y, Lee B H, Lafford T, Wang Q, Gay D and Ekerdt J G 2006 J. Appl. Phys. 99 023508
[28] Kukli K, Ritala M, Pilvi T, Aaltonen T, Aarik J, Lautala M and Leskelä M 2005 Mater. Sci. Eng. B 118 112
[29] Zhang L S and Xu H 2008 High Power Laser Particle Beams 20 894 (in Chinese)
[30] Lucovsky G, Seo H, Fleming L B, Lüning J, Lysaght P and Bersuker G 2007 Surf. Sci. 601 4236
[31] Chen G H, Hou Z F and Gong X G 2008 Comput. Mater. Sci. 44 46
[32] Lu H L, Xu M, Chen W, Ren J, Ding S J and Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese)
[33] Tuttle B R, Tang C G and Ramprasad R 2007 Phys. Rev. B 75 235324
[34] Shin M, Park Y, Kong K J and Chang H 2011 Appl. Phys. Lett. 98 173501
[35] Gavartin J L and Shluger A L 2007 Microelectron. Eng. 84 2412
[36] Wang W, Gong C, Shan B, Wallace R M and Cho K 2011 Appl. Phys. Lett. 98 232113
[37] Scheidecker R W, Hunter O Jr and Calderwood F W 1979 J. Mater. Sci. 14 2284
[38] de Boer P K and de Groot R A 1998 J. Phys.: Condens. Matter 10 10241
[39] Luo X, Zhou W, Ushakov S V, Navrotsky A and Demkov A A 2009 Phys. Rev. B 80 134119
[40] Silva C C, Leite Alves H W and Scolfaro L M R 2007 AIP Conf. Proc. 893 311
[41] Jiang H, Gomez-Abal R I, Rinke P and Scheffler M 2010 Phys. Rev. B 81 085119
[42] Debernardi A and Fanciulli M 2006 Mater. Sci. Semicond. Proc. 9 1014
[43] Muñoz Ramo D, Gavartin J L, Shluger A L and Bersuker G 2007 Microelectron. Eng. 84 2362
[44] Weng H M and Dong J M 2006 Phys. Rev. B 73 132410
[45] Zhang W, Chen W Z, Sun J Y and Jiang Z Y 2013 Chin. Phys. B 22 016601
[46] Dutta G 2009 Appl. Phys. Lett. 94 012907
[47] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Kristallogr. 567 220
[48] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[49] Liu Q J, Liu Z T and Feng L P 2011 Adv. Mater. Res. 216 341
[50] He G, Zhu L Q, Liu M, Fang Q and Zhang L D 2007 Appl. Surf. Sci. 253 3413
[51] Afanasév V V, Stesmans A, Chen F, Shi X and Campbell S A 2002 Appl. Phys. Lett. 81 1053
[52] Segall M D, Shah R, Pickard C J and Payne M C 1996 Phys. Rev. B 54 16317
[53] Shen X C 1992 Semiconductor Spectroscopy and Optical Properties, 2nd edn. (Beijing: Science Press) p. 76 (in Chinese)
[54] Okoye C M I 2003 J. Phys.: Condens. Matter 15 5945, and the references therein
[55] Lim S G, Kriventsov S, Jackson T N, Haeni J H, Schlom D G, Balbashov A M, Uecker R, Reiche P, Freeouf J L and Lucovsky G 2002 J. Appl. Phys. 91 4500
[56] Asahi R, Taga Y, Mannstadt W and Freeman A J 2000 Phys. Rev. B 61 7459
[57] Chen H S 1996 Elastic Anisotropy of Metal (Beijing: Metallurgy Industry Press) p. 20 (in Chinese)
[58] Tian S 2004 Materials Physical Properties (Beijing: Beijing University of Aeronautics and Astronautics Press) p. 379 (in Chinese)
[59] Fast L, Wills J M, Johansson B and Eriksson O 1995 Phys. Rev. B 51 17431
[60] Al-Khatatbeh Y, Lee K K M and Kiefer B 2010 Phys. Rev. B 82 144106
[61] Born M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Clarendon) p. 82
[62] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[63] Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Teubner) p. 574
[64] Reuss A 1929 Z. Angew. Math. Mech. 9 49
[65] Hill R 1952 Proc. Phys. Soc. Lond. 65 349
[66] Shan T R, Devine B D, Kemper T W, Sinnott S B and Phillpot S R 2010 Phys. Rev. B 81 125328
[67] Desgreniers S and Lagarec K 1999 Phys. Rev. B 59 8467
[68] Pugh S F 1954 Philos. Mag. 45 823
[69] Caravaca M A, Miño J C, Pérez V J, Casali R A and Ponce C A 2009 J. Phys.: Condens. Matter 21 015501
[70] Shi S Q, Ke X Z, Zhang H, Ouyang C Y, Lei M S and Chen L Q 2009 Phys. Lett. A 373 4096
[71] Labat F, Baranek P, Domain C, Minot C and Adamo C 2007 J. Chem. Phys. 126 154703
[1] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[2] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[3] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[4] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[5] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[6] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[7] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[8] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[9] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[10] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[11] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[12] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[13] Composition effect on elastic properties of model NiCo-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026102.
[14] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[15] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
No Suggested Reading articles found!