Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044204    DOI: 10.1088/1674-1056/23/4/044204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen–vacancy center in diamond

Zhang Duoa, Li Jia-Huab c, Yang Xiao-Xueb
a School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
b School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
c Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074, China
Abstract  We investigate spontaneous emission properties and control of the zero phonon line (ZPL) from a diamond nitrogen-vacancy (NV) center coherently driven by a single elliptically polarized control field. We use the Schrödinger equation to calculate the probability amplitudes of the wave function of the coupled system and derive analytical expressions of the spontaneous emission spectra. The numerical results show that a few interesting phenomena such as enhancement, narrowing, suppression, and quenching of the ZPL spontaneous emission can be realized by modulating the polarization-dependent phase, the Zeeman shift, and the intensity of the control field in our system. In the dressed-state picture of the control field, we find that multiple spontaneously generated coherence arises due to three close-lying states decaying to the same state. These results are useful in real experiments.
Keywords:  diamond nitrogen-vacancy center      spontaneous emission      quantum interference  
Received:  22 July 2013      Revised:  08 September 2013      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  76.30.Mi (Color centers and other defects)  
Fund: Part of this project supported by the National Natural Science Foundation of China (Grant Nos. 11375067, 11275074, 11104210, 11004069, and 91021011), the Doctoral Foundation of the Ministry of Education of China (Grant No. 20100142120081), and the National Basic Research Program of China (Grant No. 2012CB922103).
Corresponding Authors:  Zhang Duo, Li Jia-Hua     E-mail:  zhangduo10@gmail.com;huajia_li@163.com
About author:  42.50.Gy; 32.80.Qk; 32.50.+d; 76.30.Mi

Cite this article: 

Zhang Duo, Li Jia-Hua, Yang Xiao-Xue Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen–vacancy center in diamond 2014 Chin. Phys. B 23 044204

[1] Agarwal G S 1991 Phys. Rev. Lett. 67 980
[2] Zibrov A S, Lukin M D, Nikonov D E, Hollberg L, Scully M O, Velichansky V L and Robinson H G 1995 Phys. Rev. Lett. 75 1499
[3] Harris S E 1989 Phys. Rev. Lett. 62 1033
[4] Gao J Y, Guo C, Guo X Z, Jin G X, Wang Q W, Zhao J, Zhang H Z, Jiang Y, Wang D Z and Jiang D M 1992 Opt. Commun. 93 323
[5] Wu J H, Wang D P, Zhang H F, Xiao Z H and Gao J Y 2003 Chin. Phys. 12 39
[6] Scully M O and Fleischhauer M 1992 Phys. Rev. Lett. 69 1360
[7] Fleischhauer M, Matsko A B and Scully M O 2000 Phys. Rev. A 62 013808
[8] Singh M R 2004 Phys. Rev. A 69 023807
[9] Yang X X and Wu Y 2003 Chin. Phys. Lett. 20 1736
[10] Scully M O 1991 Phys. Rev. Lett. 67 1855
[11] Fleischhauer M, Keitel C H, Scully M O, Su C, Ulrich B T and Zhu S Y 1992 Phys. Rev. A 46 1468
[12] Wang F, Gong C, Tan X Y and Shi W X 2012 Chin. Phys. B 21 114206
[13] Bennett C H and Divincenzo D P 2000 Nature 404 247
[14] Petrosyan D and Malakyan Y P 2004 Phys. Rev. A 70 023822
[15] Paternostro M, Kim M S and Knight P L 2005 Phys. Rev. A 71 022311
[16] Jiang X Q, Zhang B, Lu Z W and Sun X D 2011 Phys. Rev. A 83 053823
[17] Li G X, Evers J and Keitel C H 2009 Phys. Rev. B 80 045102
[18] Zeng X D, Li G X, Yang Y P and Zhu S Y 2012 Phys. Rev. A 86 033819
[19] Singh M R 2007 Phys. Rev. A 75 033810
[20] Singh M R 2006 J. Phys. B: At. Mol. Opt. Phys. 39 5131
[21] Singh M R 2007 Phys. Lett. A 363 177
[22] Angelakis D G, Paspalakis E and Knight P L 2001 Phys. Rev. A 64 013801
[23] Yang Y, Fleischhauer M and Zhu S Y 2003 Phys. Rev. A 68 043805
[24] Agarwal G S and Pathak P K 2004 Phys. Rev. A 70 025802
[25] Tan R and Li G X 2005 Acta Phys. Sin. 54 2059 (in Chinese)
[26] Huang X S, Liu H L and Wang D 2012 Chin. Phys. B 21 054218
[27] Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388
[28] Paspalakis E and Knight P L 1998 Phys. Rev. Lett. 81 293
[29] Paspalakis E, Keitel C H and Knight P L 1998 Phys. Rev. A 58 4868
[30] Gu W J and Li G X 2012 Phys. Rev. A 85 014101
[31] Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
[32] Li A J, Song X L, Wei X G, Wang L and Gao J Y 2008 Phys. Rev. A 77 053806
[33] Qi J B 2009 Phys. Rev. A 80 043827
[34] Jelezko F, Gaebel T, Popa I, Domhan M, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 93 130501
[35] Epstein R J, Mendoza F M, Kato Y K and Awschalom D D 2005 Nat. Phys. 1 94
[36] Gaebel T, Domhan M, Popa I, Wittmann C, Neumann P, Jelezko F, Rabeau J R, Stavrias N, Greentree A D, Prawer S, Meijer J, Twamley J, Hemmer P R and Wrachtrup J 2006 Nat. Phys. 2 408
[37] Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
[38] Hanson R, Dobrovitski V V, Feiguin A E, Gywat O and Awschalom D D 2008 Science 320 352
[39] Park Y S, Cook A K and Wang H 2006 Nano Lett. 6 2075
[40] Larsson M, Dinyari K N and Wang H 2009 Nano Lett. 9 1447
[41] van der Sar T, Wang Z H, Blok M S, Bernien H, Taminiau T H, Toyli D M, Lidar D A, Awschalom D D, Hanson R and Dobrovitski V V 2012 Nature 484 82
[42] de Lange G, Wang Z H, Riste D, Dobrovitski V V and Hanson R 2010 Science 330 60
[43] Fuchs G D, Falk A L, Dobrovitski V V and Awschalom D D 2012 Phys. Rev. Lett. 108 157602
[44] Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sorensen A S, Hemmer P R, Zibrov A S and Lukin M D 2010 Nature 466 730
[45] Yang W L, Yin Z Q, Chen Z X, Kou S P, Feng M and Oh C H 2012 Phys. Rev. A 86 012307
[46] Yang W L, Yin Z Q, Xu Z Y, Feng M and Du J F 2010 Appl. Phys. Lett. 96 241113
[47] Santori C, Barclay P E, Fu K M C, Beausoleil R G, Spillane S and Fisch M 2010 Nanotechnology 21 274008
[48] Santori C, Tamarat P, Neumann P, Wrachtrup J, Fattal D, Beausoleil R G, Rabeau J, Olivero P, Greentree A D, Prawer S, Jelezko F and Hemmer P 2006 Phys. Rev. Lett. 97 247401
[49] Yang W L, Yin Z Q, Xu Z Y, Feng M and Oh C H 2011 Phys. Rev. A 84 043849
[50] Yang W L, An J H, Zhang C, Feng M and Oh C H 2013 Phys. Rev. A 87 022312
[51] Wang Z H and Dobrovitski V V 2011 Phys. Rev. B 84 045303
[52] Wolters J, Schell A W, Kewes G, Nüsse N, Schoengen M, Döscher H, Hannappel T, Löchel B, Barth M and Benson O 2010 Appl. Phys. Lett. 97 141108
[53] Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
[54] Khadka U, Zhang Y P and Xiao M 2010 Phys. Rev. A 81 023830
[55] Singh M R 2009 Opt. Lett. 34 2909
[56] Wu Y and Yang X X 2004 Phys. Rev. A 70 053818
[57] Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
[58] Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 69 063803
[59] Petrosyan D and Kurizki G 2001 Phys. Rev. A 64 023810
[60] Singh M R and Lipson R H 2008 J. Phys. B: At. Mol. Opt. Phys. 41 015401
[61] Xia H R, Ye C Y and Zhu S Y 1996 Phys. Rev. Lett. 77 1032
[62] Liu C P, Gong S Q, Fan X J, Jin S Q and Xu Z Z 2006 Opt. Commun. 254 368
[63] Liu C P, Gong S Q, Fan X J and Xu Z Z 2004 Opt. Commun. 231 289
[64] Liu C P, Gong S Q, Fan X J and Xu Z Z 2004 Opt. Commun. 239 383
[65] Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers L J, McMurtrie R L, Manson N B, Jelezko F and Wrachtrup J 2009 Phys. Rev. Lett. 102 195506
[66] Tamarat P, Manson N B, Harrison J P, McMurtrie R L, Nizovtsev A, Santori C, Beausoleil R G, Neumann P, Gaebel T, Jelezko F, Hemmer P and Wrachtrup J 2008 New J. Phys. 10 045004
[67] Neumann P, Kolesov R, Jacques V, Beck J, Tisler J, Batalov A, Rogers L, Manson N B, Balasubramanian G, Jelezko F and Wrachtrup J 2009 New J. Phys. 11 013017
[68] Santori C, Fattal D, Spillane S M, Fiorentino M, Beausoleil R G, Greentree A D, Olivero P, Draganski M, Rabeau J R, Reichart P, Gibson B C, Rubanov S, Jamieson D N and Prawer S 2006 Opt. Express 14 7986
[69] Maze J R, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E and Lukin M D 2011 New J. Phys. 13 025025
[70] Aharonovich I, Castelletto S, Simpson D A, Su C H, Greentree A D and Prawer S 2011 Rep. Prog. Phys. 74 076501
[71] Fuchs G D, Dobrovitski V V, Hanson R, Batra A, Weis C D, Schenkel T and Awschalom D D 2008 Phys. Rev. Lett. 101 117601
[72] Ofori-Okai B K, Pezzagna S, Chang K, Loretz M, Schirhagl R, Tao Y, Moores B A, Groot-Berning K, Meijer J and Degen C L 2012 Phys. Rev. B 86 081406(R)
[1] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[2] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[3] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[4] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[5] Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer
Xuee An(安雪娥), Zhengjun Shang(商正君), Chuanhe Ma(马传贺), Xinhe Zheng(郑新和), Cuiling Zhang(张翠玲), Lin Sun(孙琳), Fangyu Yue(越方禹), Bo Li(李波), Ye Chen(陈晔). Chin. Phys. B, 2019, 28(5): 057802.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[8] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[9] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[10] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[11] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[12] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[13] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[14] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[15] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
No Suggested Reading articles found!