Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040403    DOI: 10.1088/1674-1056/23/4/040403
GENERAL Prev   Next  

Solution of Dirac equation around a charged rotating black hole

Lü Yan, Hua Wei
College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
Abstract  The aim of this paper is to solve the radial parts of a Dirac equation in Kerr-Newman (KN) geometry. The potential is replaced by a collection of step functions, then the reflection and transmission coefficients as well as the solution of the wave equation are obtained by using a quantum mechanical method. The result shows that the waves with different values of mass will be scatted off very differently.
Keywords:  Dirac equation      Kerr-Newman space      tortoise coordinate  
Received:  20 July 2013      Revised:  22 September 2013      Accepted manuscript online: 
PACS:  04.20.-q (Classical general relativity)  
  04.70.-s (Physics of black holes)  
  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  95.30.Sf (Relativity and gravitation)  
Fund: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 11247288) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11301350).
Corresponding Authors:  Lü Yan     E-mail:  yanlvthp88@aliyun.com
About author:  04.20.-q; 04.70.-s; 04.70.Dy; 95.30.Sf

Cite this article: 

Lü Yan, Hua Wei Solution of Dirac equation around a charged rotating black hole 2014 Chin. Phys. B 23 040403

[1] Hawking S W 1974 Nature 248 30
[2] Parikh M K and Wiltzek F 2000 Phys. Rev. Lett. 85 5042
[3] Zhang J Y and Zhao Z 2005 Phys. Lett. B 618 14
[4] Zhang J Y and Zhao Z 2005 Nucl. Phys. B 725 173
[5] Chen D Y, Yang H T and Zu X T 2008 Eur. Phys. J. C 56 119
[6] Kerner R and Mann R B 2007 Phys. Rev. D 75 084022
[7] Lin K and Yang S Z 2009 Chin. Phys. B 18 2154
[8] Zeng X X and Yang S Z 2009 Chin. Phys. B 18 462
[9] Zhou S W, Liu B, Huang J L and Liu W B 2010 Chin. Phys. B 19 010403
[10] Zhang L C, Li H F and Zhao R 2010 Europhys. Lett. 89 20008
[11] Li H L 2010 Eur. Phys. J. C 65 547
[12] Li H L 2011 Chin. Phys. B 20 030402
[13] Lin K and Yang S Z 2011 Chin. Phys. B 20 110403
[14] Shao J Z and Wang Y J 2012 Chin. Phys. B 21 040404
[15] Higuchi A, Matsas G E A and Sudarsky D 1998 Phys. Rev. D 58 104021
[16] Grispino L C B, Higuchi A and Matsas G E A 2000 Class. Quantum Grav. 17 19
[17] Brady P R, Chambers C M, KrivanW and Laguna P 1997 Phys. Rev. D 55 7538
[18] Brady P R, Chambers C M, Laarakkers W G and Poisson E 1999 Phys. Rev. D 60 064003
[19] Brevik I and Simonsen B 2001 Gen. Relat. Grav. 33 1839
[20] Tian J X, Gui Y X, Guo G H, Lü Y, Zhang S H and Wang W 2003 Gen. Relat. Grav. 35 1473
[21] Guo G H, Gui Y X and Tian J X 2005 Gen. Relat. Grav. 37 1323
[22] Liu M L, Liu H Y, Zhang J F and Yu F 2008 Chin. Phys. B 17 1633
[23] Guo G H 2010 Chin. Phys. B 19 110403
[24] Liu L and Xu D Y 1980 Acta Phys. Sin. 29 1617 (in Chinese)
[25] Khanal U and Panchapakesan N 1981 Phys. Rev. D 24 829
[26] Zhao Z, Gui Y X and Liu L 1981 Acta Astrophys. Sin. 1 141 (in Chinese)
[27] Khanal U 1985 Phys. Rev. D 32 879
[28] Mukhopadhyay B and Chakrabarti S K 1999 Class. Quantum. Grav. 16 3165
[29] Mukhopadhyay B and Chakrabarti S K 2000 Nucl. Phys. B 582 627
[30] Chakrabarti S K and Mukhopadhyay B 2000 Mon. Not. R. Astron. Soc. 317 979
[31] Mukhopadhyay B and Dadhich N 2004 Class. Quantum. Grav. 21 3621
[32] Mukhopadhyay B 2000 Class. Quantum. Grav. 17 2017
[33] Mukhopadhyay B and Ghosh K 2008 Class. Quantum. Grav. 25 65006
[34] Chandrasekhar S 1976 Proc. R. Soc. Lond. A 349 571
[35] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (London: Clarendon Press) pp. 531-562
[36] Lyu Y and Gui Y X 2007 Phys. Scr. 75 152
[37] Lyu Y, Cui S and Liu L 2009 Mod. Phys. Lett. A 24 2433
[38] Chakrabarti S K 1984 Proc. R. Soc. Lond. A 391 27
[1] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[2] Hawking radiation of stationary and non-stationary Kerr–de Sitter black holes
T. Ibungochouba Singh. Chin. Phys. B, 2015, 24(7): 070401.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[6] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[7] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[8] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[9] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[10] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[11] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[12] Quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge
Xie Zhi-Kun, Pan Wei-Zhen, Yang Xue-Jun. Chin. Phys. B, 2013, 22(3): 039701.
[13] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[14] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[15] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
No Suggested Reading articles found!