Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040301    DOI: 10.1088/1674-1056/23/4/040301
GENERAL Prev   Next  

Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED

Wen Jing-Jia, Yeon Kyu-Hwanga, Wang Hong-Fub, Zhang Shoub
a Department of Physics, College of Natural Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea;
b Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  A scheme is proposed to generate an N-qubit cluster-type entangled squeezed vacuum state (CTESVS) based on the two-photon interaction between a two-level atom and the cavity fields with the cavity QED system. The CTESVS in N separate cavities can be effectively obtained after performing a simple one-qubit measurement on the atom. The influence of cavity decay on the CTESVS is also discussed.
Keywords:  cluster state      squeezed vacuum state      quantum entanglement      cavity QED  
Received:  30 July 2013      Revised:  31 August 2013      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the International Research & Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) of Korea (Grant No. 2011-0030864), the National Natural Science Foundation of China (Grant Nos. 11264042 and 61068001), the China Postdoctoral Science Foundation (Grant No. 2012M520612), the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education (Grant No. 201316), and the Talent Program of Yanbian University of China (Grant No. 950010001).
Corresponding Authors:  Wang Hong-Fu, Zhang Shou     E-mail:  hfwang@ybu.edu.cn;szhang@ybu.edu.cn
About author:  03.65.Ud; 42.50.Dv; 42.50.Pq

Cite this article: 

Wen Jing-Ji, Yeon Kyu-Hwang, Wang Hong-Fu, Zhang Shou Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED 2014 Chin. Phys. B 23 040301

[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Cerf N J 2001 Phys. Rev. A 63 052311
[3] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[4] Yang Y G, Wen Q Y and Zhu F C 2005 Acta Phys. Sin. 54 5544 (in Chinese)
[5] Bennett C H, Gilles B, Claude C, Richard J, Asher P and William K W 1993 Phys. Rev. Lett. 70 1895
[6] van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
[7] Zhang Q, Li F L and Li H R 2006 Acta Phys. Sin. 55 2275 (in Chinese)
[8] Wang H F, Zhu A D, Zhang S and Yeon K H 2013 Phys. Rev. A 87 062337
[9] Wang H F and Zhang S 2008 Chin. Phys. B 17 1165
[10] Wang H F, Zhang S and Yeon K H 2012 Chin. Phys. B 21 040306
[11] Wang H F, Zhang S and Yeon K H 2008 J. Korean Phys. Soc. 53 1787
[12] Wang H F, Zhu A D and Zhang S 2013 Opt. Express 21 12484
[13] Greenberger D M, Horne M, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
[14] Mermin N D 1990 Phys. Rev. Lett. 65 1838
[15] Xi X Q, Hao S R, Chen W X and Yue R H 2002 Chin. Phys. Lett. 19 1044
[16] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[17] Guo J Y 2002 Chin. Phys. Lett. 19 1041
[18] Song X G and Feng X L 2004 Chin. Phys. Lett. 21 497
[19] Dür W and Briegel H J 2004 Phys. Rev. Lett. 92 180403
[20] Wang H F and Zhang S 2009 Eur. Phys. J. D 53 359
[21] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[22] Schlingemann D and Werner R F 2001 Phys. Rev. A 65 012308
[23] Richard C, Daniel G and Lo H 1999 Phys. Rev. Lett. 83 648
[24] Philip W, Markus A, Kevin J R and Anton Z 2005 Phys. Rev. Lett. 95 020403
[25] Zheng H Y, Zhang X T, Shao X Q, Wen J J and Zhang S 2008 Chin. Phys. Lett. 25 836
[26] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[27] Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
[28] Song J, Xia Y, Song H S, Guo J L and Nie J 2007 Europhys. Lett. 80 60001
[29] Song J, Xia Y and Song H S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 065507
[30] Zhan Z M and Li W B 2007 Chin. Phys. Lett. 24 344
[31] Zheng S B 2006 Phys. Rev. A 24 065802
[32] Guo G P, Zhang H, Tu T and Guo G C 2007 Phys. Rev. A 75 050301(R)
[33] Xue Z Y and Wang Z D 2007 Phys. Rev. A 75 064303
[34] Mandel O, Greiner M, Widera A, Tom T, Hänsch T W and Bloch I 2003 Nature 425 937
[35] Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005 Nature 434 169
[36] Su X, Tan A, Jia X, Zhang J, Xie C and Peng K 2007 Phys. Rev. Lett. 98 070502
[37] Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M and Imoto N 2008 Phys. Rev. Lett. 100 210501
[38] Zhang J and Braunstein S L 2006 Phys. Rev. A 73 032318
[39] Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C and Nielsen M A 2006 Phys. Rev. Lett. 97 110501
[40] Munhoz P P, Semiao F L, Vildiella-Barranco A and Roversi J A 2008 Phys. Lett. A 372 3580
[41] Becerra-Castro E M, Cardoso W B, Avelar A T and Baseia B 2008 J. Phys. B: At. Mol. Opt. Phys. 41 085505
[42] Yang Z B, Wu H Z, Zheng S B and Jia L J 2008 Chin. Phys. B 17 4207
[43] Wang W F, Sun X Y and Luo X B 2008 Chin. Phys. Lett. 25 839
[44] An N B and Kim J 2009 Phys. Rev. A 80 042316
[45] Fan Q B and Zhou L 2010 Int. J. Theor. Phys. 49 128
[46] An N B, Kim K and Kim J 2011 Quantum Inf. Comput. 11 124
[47] Wen J J, Shao X Q, Jin X R, Zhang S and Yeon K H 2008 Chin. Phys. B 17 1618
[48] Chen C Y, Feng M and Gao K L 2006 Phys. Rev. A 73 034305
[49] Kuhr S, Gleyzes S, Guerlin C, Bernu J, Hoff U B, Delglise S, Osnaghi S, Brune M and Raimond J M 2007 Appl. Phys. Lett. 90 164101
[50] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[51] Meunier T, Gleyzes S, Maioli P, Auffeves A, Nogues G, Brune M, Raimond J M and Haroche S 2005 Phys. Rev. Lett. 94 010401
[52] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166
[53] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2006 Phys. Rev. Lett. 97 083602
[1] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[2] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[3] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[4] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[5] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[6] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[7] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[8] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[9] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[10] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[11] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[12] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[13] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[14] Entropy of field interacting with two two-qubit atoms
Tang-Kun Liu(刘堂昆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2018, 27(9): 090303.
[15] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
No Suggested Reading articles found!