Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 023401    DOI: 10.1088/1674-1056/23/2/023401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction

Wei Qiang
Department of Applied Physics, Chongqing University of Technology, Chongqing 400050, China
Abstract  The stereodynamics and reaction mechanism of the H’(2S)+NH(X3-→N(4S) +H2 reaction are thoroughly studied at collision energies in the 0.1 eV–1.0 eV range using the quasiclassical trajectory (QCT) on the ground 4A" potential energy surface (PES). The distributions of vector correlations between products and reagents P(θr), i>P(φr) and P(θr, φr) are presented and discussed. The results indicate that product rotational angular momentum j’ is not only aligned, but also oriented along the direction perpendicular to the scattering plane; further, the product H2 presents different rotational polarization behaviors for different collision energies. Furthermore, four polarization-dependent differential cross sections (PDDCSs) of the product H2 are also calculated at different collision energies. The reaction mechanism is analyzed based on the stereodynamics properties. It is found that the abstraction mechanism is appropriate for the title reaction.
Keywords:  quasiclassical trajectory      H’+NH reaction      stereodynamics      mechanism  
Received:  06 April 2013      Revised:  08 May 2013      Published:  12 December 2013
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  34.50.-s (Scattering of atoms and molecules)  
  34.50.Lf (Chemical reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204392 and 11047125).
Corresponding Authors:  Wei Qiang     E-mail:  qiangwei@cqut.edu.cn
About author:  34.10.+x; 34.50.-s; 34.50.lf

Cite this article: 

Wei Qiang Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction 2014 Chin. Phys. B 23 023401

[1] Bernstein R B, Herschbach D R and Levine R D 1987 J. Phys. Chem. 91 5365
[2] Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445
[3] Jonah C D, Zare R N and Ottinger C 1972 J. Chem. Phys. 56 263
[4] Vallance C 2011 Phys. Chem. Chem. Phys. 13 14427
[5] Han K L, He G Z and Lou N Q 1993 Chin. Phys. Lett. 10 517
[6] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[7] De Miranda M P and Clary D C 1997 J. Chem. Phys. 106 4509
[8] Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
[9] Li X H, Wang M S, Pino H, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[10] Duan L H, Zhang W Q, Xu X S, Cong S L and Chen M D 2009 Mol. Phys. 107 2579
[11] Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
[12] Garcia J E 2007 J. Phys. Chem. A 111 5792
[13] Czakó G and Bowman J M 2009 J. Chem. Phys. 131 244302
[14] Miller J A and Bowman C T 1989 Energy Combust. Sci. 15 287
[15] Koshi M, Yoshimura M, Fukuda K, Matsui H, Saito K, Watanabe M, Imamura A and Chen C X 1990 J. Chem. Phys. 93 8703
[16] Davidson D F and Hanson R K 1990 Int. J. Chem. Kin. 22 843
[17] Adam L, Hack W, Zhu H, Qu Z W and Schinke R 2005 J. Chem. Phys. 122 114301
[18] Xu Z F, Fang D C and Fu X Y 1997 J. Phys. Chem. A 101 4432
[19] Zhai H S and Zhou P W 2012 Chin. Phys. Lett. 29 063401
[20] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[21] Pascual R, Schatz G C, Lendvay G and Troya D 2002 J. Phys. Chem. A 106 4125
[22] Jordan M J T, Thompson K C and Collins M A 1995 J. Chem. Phys. 102 5647
[23] Poveda L A and Varandas A J C 2006 Theor. Chem. Acc. 116 404
[24] Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867
[25] Han B R, Yang H, Zheng Y J and Varandas A J C 2010 Chem. Phys. Lett. 493 225
[26] Zhai H S and Han K L 2011 J. Chem. Phys. 135 104314
[27] Duan Z X, Li W L and Qiu M H 2012 J. Chem. Phys. 136 144309
[28] Yue X F 2012 Chin. Phys. B 21 073401
[29] Liu Y F, He X H, Shi D H and Sun J F 2011 Chin. Phys. B 20 078201
[30] Li X H, Wang M S, Pino H, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[31] Chu T S 2009 J. Comput. Chem. 31 1385
[32] Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
[33] Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
[34] Yang T G, Yuan J C, Cheng D H and Chen M D 2013 Commn. Comput. Chem. 1 15
[35] Bai M M, Ge M H, Yang H and Zheng Y J 2012 Chin. Phys. B 21 123401
[36] Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
[37] Xiao J, Yang C L and Wang M S 2012 Chin. Phys. B 21 043101
[38] Li R J, Han K L, Li F E, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[39] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[40] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[41] Han K L, He G Z and Lou N Q 1989 Chin. J. Chem. Phys. 2 323
[42] Ding Y J and Shi Y 2011 Comput. Theor. Chem. 963 306
[43] Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
[1] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[2] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[3] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[4] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[5] Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries
Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐). Chin. Phys. B, 2020, 29(6): 068202.
[6] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[7] Water on surfaces from first-principles molecular dynamics
Peiwei You(游佩桅), Jiyu Xu(徐纪玉), Cui Zhang(张萃), Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(11): 116804.
[8] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Min-Rong An(安敏荣), Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
[9] Twisting mode of supercoil leucine-rich domain mediates peptide sensing in FLS2–flg22–BAK1 complex
Zhi-Chao Liu(刘志超), Qin Liu(刘琴), Chan-You Chen(陈禅友), Chen Zeng(曾辰), Peng Ran(冉鹏), Yun-Jie Zhao(赵蕴杰), Lei Pan(潘磊). Chin. Phys. B, 2020, 29(10): 108709.
[10] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[11] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[12] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[13] Growth of high quality Sr2IrO4 epitaxial thin films onconductive substrates
Hui Xu(徐珲), Zhangzhang Cui(崔璋璋), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林). Chin. Phys. B, 2019, 28(7): 078102.
[14] Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector
Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2019, 28(7): 078502.
[15] Aging mechanism of GaN-based yellow LEDs with V-pits
Tian-Ran Zhang(张天然), Fang Fang(方芳), Xiao-Lan Wang(王小兰), Jian-Li Zhang(张建立), Xiao-Ming Wu(吴小明), Shuan Pan(潘栓), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2019, 28(6): 067305.
No Suggested Reading articles found!