Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020311    DOI: 10.1088/1674-1056/23/2/020311
GENERAL Prev   Next  

Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity

Liu Xin (刘欣)a, Liao Qing-Hong (廖庆洪)b, Fang Guang-Yu (方光宇)a, Wang Yue-Yuan (王月媛)c, Liu Shu-Tian (刘树田)a
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China;
c Key Laboratory for Advanced Functional Materials and Excited State Process of Heilongjiang Province, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
Abstract  A scheme is proposed to generate GHZ state and realize quantum phase gate for superconducting qubits placed in a microwave cavity. This scheme uses resonant interaction between the qubits and the cavity mode, so that the interaction time is short, which is important in view of decoherence. In particular, the phase gate can be realized simply with a single interaction between the qubits and the cavity mode. With cavity decay being considered, the fidelity and success probability are both very close to unity.
Keywords:  superconducting qubits      GHZ state      phase gate  
Received:  26 April 2013      Revised:  22 July 2013      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.Cp (Josephson devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01702).
Corresponding Authors:  Liu Shu-Tian     E-mail:  stliu@hit.edu.cn
About author:  03.65.Ud; 03.67.Lx; 85.25.Cp

Cite this article: 

Liu Xin (刘欣), Liao Qing-Hong (廖庆洪), Fang Guang-Yu (方光宇), Wang Yue-Yuan (王月媛), Liu Shu-Tian (刘树田) Resonant interaction scheme for GHZ state preparation and quantum phase gate with superconducting qubits in a cavity 2014 Chin. Phys. B 23 020311

[1] Makhlin Y, Schon G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[2] Orlando T P, Mooij J E, Tian L, Wal C H, Levitov L S, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
[3] You J Q and Nori F 2005 Phys. Today 58 42
[4] Clarke J and Wilhelm F K 2008 Nature 453 1031
[5] Pashkin Y A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V and Tsai J S 2003 Nature 421 823
[6] Majer J B, Paauw F G, Haar A C G, Harmans C J P M and Mooij J E 2005 Phys. Rev. Lett. 94 090501
[7] Niskanen A O, Harrabi K, Yoshihara F, Nakamura Y, Lloyd S and Tsai J S 2007 Science 316 723
[8] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 449 443
[9] Liu Y X, Wei L F, Tsai J S and Nori F 2006 Phys. Rev. Lett. 96 067003
[10] Rigetti C, Blais A and Devoret M 2005 Phys. Rev. Lett. 94 240502
[11] Rigetti C and Devoret M 2010 Phys. Rev. B 81 134507
[12] Tanamoto T, Liu Y X, Fujita S, Hu X D and Nori F 2006 Phys. Rev. Lett. 97 230501
[13] Niskanen A O, Nakamura Y and Tsai J S 2006 Phys. Rev. B 73 094506
[14] You J Q, Tsai J S and Nori F 2003 Phys. Rev. B 68 024510
[15] He X L, Liu Y X, You J Q and Nori F 2007 Phys. Rev. A 76 022317
[16] Chow J M, Corcoles A D, Gambetta J M, Rigetti C, Johnson B R, Smolin J A, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2011 Phys. Rev. Lett. 107 080502
[17] Yang C P and Chu S I 2003 Phys. Rev. A 67 042311
[18] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[19] Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A 75 032329
[20] Wang Y D, Chesi S, Loss D and Bruder C 2010 Phys. Rev. B 81 104524
[21] Shi Z G, Chen X W, Zhu X X and Song K H 2009 Chin. Phys. B 18 910
[22] Li Y L and Fang M F 2011 Chin. Phys. B 20 050314
[23] Guo G C and Zhang Y S 2002 Phys. Rev. A 65 054302
[24] Zheng S B 2005 Phys. Rev. A 71 062335
[25] Li Y L, Fang M F and Zeng K 2010 Chin. Phys. B 19 010307
[26] Liao C G, Chen Z H and Luo C L 2010 Acta Phys. Sin. 59 8526 (in Chinese)
[27] Gong S Q, Wang Z Y, Feng X L and Xu Z Z 2000 Chin. Phys. 9 94
[28] Yang Z B 2007 Chin. Phys. 16 1963
[29] Song K H, Zhou Z W and Guo G C 2005 Phys. Rev. A 71 052310
[30] Yang C P and Han S 2004 Phys. Rev. A 70 062323
[31] Schoelkopf R J and Girvin S M 2008 Nature 451 664
[32] Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502
[1] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[4] Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
Bing Wang(王冰), San-Qiu Liu(刘三秋), and Li-Hua Gong(龚黎华). Chin. Phys. B, 2022, 31(1): 010302.
[5] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[6] Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage
Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新). Chin. Phys. B, 2018, 27(10): 100307.
[7] Invariants-based shortcuts for fast generating Greenberger—Horne—Zeilinger state among three superconducting qubits
Jing Xu(徐晶), Lin Yu(于琳), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(9): 090301.
[8] Fast generating W state of three superconducting qubits via Lewis-Riesenfeld invariants
Lin Yu(于琳), Jing Xu(徐晶), Jin-Lei Wu(吴金雷), Xin Ji(计新). Chin. Phys. B, 2017, 26(6): 060306.
[9] Decay of N-qubit GHZ states in Pauli channels
Chen Xiao-Yu (陈小余), Wang Ting-Ting (王婷婷). Chin. Phys. B, 2015, 24(8): 080303.
[10] Nonlocal multi-target controlled—controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis
Chen Li-Bing (陈立冰), Lu Hong (路洪). Chin. Phys. B, 2015, 24(7): 070307.
[11] Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit
Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红). Chin. Phys. B, 2015, 24(11): 110304.
[12] Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities
Sun Qian (孙倩), He Juan (何娟), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(6): 060305.
[13] Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems
Cao Cong (曹聪), Liu Gang (刘刚), Zhang Ru (张茹), Wang Chuan (王川). Chin. Phys. B, 2014, 23(4): 040304.
[14] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
[15] Generating genuine multipartite entanglement via XY-interactionand via projective measurements
Mazhar Ali. Chin. Phys. B, 2014, 23(12): 120307.
No Suggested Reading articles found!