Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020302    DOI: 10.1088/1674-1056/23/2/020302
GENERAL Prev   Next  

Photon number cumulant expansion and generating function for photon added- and subtracted-two-mode squeezed states

Lu Dao-Minga, Fan Hong-Yib
a College of Mechanic and Electronic Engineering, Wuyi University, Wuyishan 354300, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  For the first time, we derive the photon number cumulant for two-mode squeezed state and show that its cumulant expansion leads to normalization of two-mode photon subtracted-squeezed states and photon added- squeezed states. We show that the normalization is related to Jacobi polynomial, so the cumulant expansion in turn represents the new generating function of Jacobi polynomial.
Keywords:  Jacobi polynomial      photon number cumulant expansion      photon subtracted- and photon added-two-mode squeezed states  
Received:  15 May 2013      Revised:  19 July 2013      Published:  12 December 2013
PACS:  03.65.Ca (Formalism)  
  02.30.Gp (Special functions)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2011J01018) and the National Natural Science Foundation of China (Grant No. 11175113).
Corresponding Authors:  Lu Dao-Ming     E-mail:
About author:  03.65.Ca; 02.30.Gp; 42.50.-p

Cite this article: 

Lu Dao-Ming, Fan Hong-Yi Photon number cumulant expansion and generating function for photon added- and subtracted-two-mode squeezed states 2014 Chin. Phys. B 23 020302

[1] Ourjoumtsev A, Dantan A, Tualle-Brouri R and Grangier P 2007 Phys. Rev. Lett. 98 030502
[2] Olivares S and Paris M G A 2005 J. Opt. B: Quantum Semiclass. 7 S392
[3] Zhang Z X and Fan H Y 1993 Phys. Lett. A 174 206
[4] Fan H Y 2008 Ann. Phys. 323 1502
[5] Yang Y and Fan H Y 2013 Chin. Phys. B 22 020303
[6] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[7] Fan H Y and Ye X 1993 Phys. Lett. A 175 387
[8] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover Publications)
[9] Fan H Y 2010 Commun. Theor. Phys. (Beijing, China) 53 344
[10] Fan H Y, Hu L Y and Xu X X 2009 Mod. Phys. Lett. A 24 1597
[11] Zhang Z X and Fan H Y 1992 Phys. Lett. A 165 14
[12] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Science 312 83
[13] Boyd R W, Chan K W and O’Sullivan M N 2007 Science 317 1874
[14] Zavatta A, Parigi V, Kim M S, Jeong H and Bellini M 2009 Phys. Rev. Lett. 103 140406
[15] Invernizzi C, Olivares S, Paris M G A and Banaszek K 2005 Phys. Rev. A 72 042105
[16] Dell’ Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 428 53 and references therein
[17] Kim M S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 133001
[1] Improving entanglement of assistance bylocal parity-time symmetric operation
Zhi He(贺志), Zun-Yan Nie(聂尊言), Qiong Wang(王琼). Chin. Phys. B, 2019, 28(12): 120305.
[2] The upper bound function of nonadiabatic dynamics in parametric driving quantum systems
Lin Zhang(张林), Junpeng Liu(刘军鹏). Chin. Phys. B, 2019, 28(8): 080301.
[3] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[4] Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields
M Eshghi, H Mehraban, S M Ikhdair. Chin. Phys. B, 2017, 26(6): 060302.
[5] Gazeau-Klauder coherent states examined from the viewpoint of diagonal ordering operation technique
Dušan Popov, Romeo Negrea, Miodrag Popov. Chin. Phys. B, 2016, 25(7): 070301.
[6] Inverse problem of quadratic time-dependent Hamiltonians
Guo Guang-Jie, Meng Yan, Chang Hong, Duan Hui-Zeng, Di Bing. Chin. Phys. B, 2015, 24(8): 080301.
[7] Unified treatment of the bound states of the Schiöberg and the Eckart potentials using Feynman path integral approach
A. Diaf. Chin. Phys. B, 2015, 24(2): 020302.
[8] Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM
A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo. Chin. Phys. B, 2014, 23(12): 120303.
[9] Transmission time in the reflectionless complex potential
Yin Cheng, Wang Xian-Ping, Shan Ming-Lei, Han Qing-Bang, Zhu Chang-Ping. Chin. Phys. B, 2014, 23(10): 100301.
[10] Exact solution of Dirac equation for Scarf potential with new tensor coupling potential for spin and pseudospin symmetries using Romanovski polynomials
A. Suparmi, C. Cari, U. A. Deta. Chin. Phys. B, 2014, 23(9): 090304.
[11] Maximal entanglement from photon-added nonlinear coherent states via unitary beam splitters
K. Berrada. Chin. Phys. B, 2014, 23(2): 024208.
[12] New approach to Q-P (P-Q) ordering of quantum mechanical operators and its applications
Hu Li-Yun, Zhang Hao-Liang, Jia Fang, Tao Xiang-Yang. Chin. Phys. B, 2013, 22(12): 120301.
[13] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
[14] A diagrammatic categorification of the fermion algebra
Lin Bing-Sheng, Wang Zhi-Xi, Wu Ke, Yang Zi-Feng. Chin. Phys. B, 2013, 22(10): 100201.
[15] The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential
H. Hassanabadi, M. Kamali. Chin. Phys. B, 2013, 22(10): 100304.
No Suggested Reading articles found!