Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124704    DOI: 10.1088/1674-1056/23/12/124704
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Particle path tracking method in two-and three-dimensional continuously rotating detonation engines

Zhou Rui (周蕊), Wu Dan (武丹), Liu Yan (刘岩), Wang Jian-Ping (王健平)
State Key Laboratory of Turbulence & Complex Systems, Center for Applied Physics and Technology, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
Abstract  The particle path tracking method is proposed and used in two-dimensional (2D) and three-dimensional (3D) numerical simulations of continuously rotating detonation engines (CRDEs). This method is used to analyze the combustion and expansion processes of the fresh particles, and the thermodynamic cycle process of CRDE. In a 3D CRDE flow field, as the radius of the annulus increases, the no-injection area proportion increases, the non-detonation proportion decreases, and the detonation height decreases. The flow field parameters on the 3D mid annulus are different from in the 2D flow field under the same chamber size. The non-detonation proportion in the 3D flow field is less than in the 2D flow field. In the 2D and 3D CRDE, the paths of the flow particles have only a small fluctuation in the circumferential direction. The numerical thermodynamic cycle processes are qualitatively consistent with the three ideal cycle models, and they are right in between the ideal F–J cycle and ideal ZND cycle. The net mechanical work and thermal efficiency are slightly smaller in the 2D simulation than in the 3D simulation. In the 3D CRDE, as the radius of the annulus increases, the net mechanical work is almost constant, and the thermal efficiency increases. The numerical thermal efficiencies are larger than F–J cycle, and much smaller than ZND cycle.
Keywords:  continuously rotating detonation engine      thermodynamic cycle      numerical simulation      particle path tracking method  
Received:  21 February 2014      Revised:  27 May 2014      Accepted manuscript online: 
PACS:  47.40.Rs (Detonation waves)  
  47.40.-x (Compressible flows; shock waves)  
Corresponding Authors:  Zhou Rui     E-mail:  ameliazhr@163.com

Cite this article: 

Zhou Rui (周蕊), Wu Dan (武丹), Liu Yan (刘岩), Wang Jian-Ping (王健平) Particle path tracking method in two-and three-dimensional continuously rotating detonation engines 2014 Chin. Phys. B 23 124704

[1]Huang Y, Ji H and Lien F S 2012 Chin. Phys. Lett. 29 114701
[2]Han X, Zhou J and Lin Z Y 2012 Chin. Phys. B 21 124702
[3]Shen H, Liu K X and Zhang D L 2011 Chin. Phys. Lett. 28 124705
[4]Wolanski P 2013 Proc. Combust. Inst. 34 125
[5]Lu F K, Braun E M, Massa L and Wilson D R 2011 AIAA 2011 6043
[6]Voitsekhovskii B V 1959 Doklady Akademii Nauk SSSR 129 1254
[7]Adamson T C Jr and Olsson G R 1967 Astronautica Acta 14 405
[8]Nicholls J A, Cullen R E and Ragland K W 1966 J. Spacecraft Rockets 3 893
[9]Bykovskii F A, Zhdan S A and Vedernikov E F 2006 J. Propul. Power 22 1204
[10]Zhdan S A, Bykovskii F A and Vedernikov E F 2007 Combust. Expl. Shock Waves 43 449
[11]Kindracki J, Wolanski P and Gut Z 2011 Shock Waves 21 75
[12]Davidenko D M, Gokalp I and Kudryavtsev A N 2008 AIAA 2008 2680
[13]Eude Y, Davidenko D M and Gokalp I 2011 AIAA 2011 2236
[14]Schwer D A and Kailasanath K 2012 AIAA 2012 0617
[15]Shao Y T and Wang J P 2010 Chin. Phys. Lett. 27 034705
[16]Shao Y T and Wang J P 2010 Chin. J. Aeronaut. 23 647
[17]Shao Y T, Liu M and Wang J P 2010 Combust. Sci. Technol. 182 1586
[18]Zhou R and Wang J P 2012 Combust. Flame 159 3632
[19]Zhou R and Wang J P 2013 Shock Waves 23 461
[20]Liu S J, Lin Z Y and Sun M B 2011 Chin. Phys. Lett. 28 094704
[21]Hishida M, Fujiwara T and Wolanski P 2009 Shock Waves 19 1
[22]Uemura Y, Hayashi A K, Asahara M, Tsuboi N and Yamada E 2013 Proc. Combust. Inst. 34 1981
[23]Korobeinikov V P and Levin V A 1972 Astronautica Acta 17 529
[24]Balsara D S and Shu C W 2000 J. Comput. Phys. 160 405
[25]Shu C W and Osher S 1989 J. Comput. Phys. 83 32
[26]Wintenberger E and Shepherd J E 2006 J. Propul. Power 22 694
[27]Fickett W and Davis W C 2001 Detonation Theory and Experiment 2 35
[28]Heiser W H and Pratt D T 2002 J. Propul. Power 18 68
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[13] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[14] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!