Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124502    DOI: 10.1088/1674-1056/23/12/124502
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives

Zhou Yana, Zhang Yib
a College of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China;
b College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
Abstract  

The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.

Keywords:  fractional Birkhoffian system      Noether'      s theorem      fractional conserved quantity      Riemann–      Liouville fractional derivative     
Received:  13 May 2014      Published:  15 December 2014
PACS:  45.10.Hj (Perturbation and fractional calculus methods)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  11.30.Na (Nonlinear and dynamical symmetries (spectrum-generating symmetries))  
  02.30.Xx (Calculus of variations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 10972151 and 11272227) and the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province, China (Grant No. CXZZ110949).

Corresponding Authors:  Zhang Yi     E-mail:  weidiezh@gmail.com

Cite this article: 

Zhou Yan, Zhang Yi Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives 2014 Chin. Phys. B 23 124502

[1]Noether A E 1918 Nachr kgl Ges Wiss Göttingen. Math. Phys. KI II 235
[2]Djukić D J and Vujanović B D 1975 Acta Mech. 23 17
[3]Li Z P 1981 Acta Phys. Sin. 30 1659 (in Chinese)
[4]Bahar L Y and Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125
[5]Liu D 1991 Sci. China Ser. A 34 419
[6]Mei F X 1993 Sci. China: Ser. A 36 1456
[7]Mei F X 2001 Int. J. Non-Linear Mech. 36 817
[8]Oldham K B and Spanier J 1974 The Fractional Calculus (San Diego: Academic Press)
[9]Riewe F 1996 Phys. Rev. E 53 1890
[10]Riewe F 1997 Phys. Rev. E 55 3581
[11]Agrawal O P 2002 J. Math. Anal. Appl. 272 368
[12]Agrawal O P 2004 Nonlinear Dyn. 38 32
[13]Agrawal O P 2007 J. Vib. Control 13 1217
[14]Agrawal O P 2010 Comput. Math. Appl. 59 1852
[15]Baleanu D 2009 Phys. Scr. T136 014006
[16]Baleanu D, Muslih S I and Rabei E M 2008 Nonlinear Dyn. 53 67
[17]Baleanu D and Muslih S I 2005 Phys. Scr. 72 119
[18]Baleanu D and Trujillo J I 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1111
[19]Atanacković T M, Konjik S and Pilipović S 2008 J. Phys. A: Math. Theor. 41 095201
[20]Atanacković T M, Konjik S, Pilipović S, et al. 2009 Nonlinear Anal. 71 1504
[21]Atanacković T M, Konjik S, Oparnica Lj, et al. 2010 J. Phys. A: Math. Theor. 43 255203
[22]El-Nabulsi A R 2005 Fizika A 14 289
[23]El-Nabulsi A R and Torres D F M 2008 J. Math. Phys. 49 053521
[24]El-Nabulsi A R 2011 Centr. Eur. J. Phys. 9 250
[25]El-Nabulsi A R 2011 Appl. Math. Comput. 217 9492
[26]Frederico G S F and Torres D F M 2007 J. Math. Anal. Appl. 334 834
[27]Frederico G S F and Torres D F M 2008 Nonlinear Dyn. 53 215
[28]Frederico G S F and Torres D F M 2010 Appl. Math. Comput. 217 1023
[29]Frederico G S F and Torres D F M 2006 Proc. 2nd IFAC Workshop on Fractional Differentiation and Its Applications, July 19-21, 2006, Portugal, p. 142
[30]Frederico G S F and Torres D F M 2006 Int. J. Appl. Math. 19 97
[31]Frederico G S F and Torres D F M 2007 Int. J. Ecol. Econ. Stat. 9 74
[32]Frederico G S F and Torres D F M 2008 WSEAS Trans. Math. 7 6
[33]Zhang Y and Zhou Y 2013 Nonlinear Dyn. 73 783
[34]Long Z X and Zhang Y 2014 Acta Mech. 225 77
[35]Long Z X and Zhang Y 2014 Int. J. Theor. Phys. 53 841
[36]Cresson J 2007 J. Math. Phys. 48 033504
[37]Zhang S H, Chen B Y and Fu J L 2012 Chin. Phys. B 21 100202
[38]Zhou S, Fu H and Fu J L 2011 Sci. China: Phys. Mech. Astron. 54 1847
[39]Luo S K and Li L 2013 Nonlinear Dyn. 73 639
[40]Malinowska A B 2012 Appl. Math. Lett. 25 1941
[41]Zhang Y 2013 Acta Phys. Sin. 62 164501 (in Chinese)
[42]Chen J and Zhang Y 2014 Acta Phys. Sin. 63 104501 (in Chinese)
[43]Zhang Y 2013 Acta Sci. Nat. Univ. Sunyatseni 52 45
[44]Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press)
[45]Anatoly A K, Hari M S and Juan J T 2006 Theory and Applications of Fractional Differential Equations (Netherlands: Elsevier B.V.)
[46]Zhou Y and Zhang Y 2013 Bull. Sci. Technol. 29 4
[47]Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian System (Beijing: Beijing Institute of Technology Press) (in Chinese)
[1] Conserved quantities and adiabatic invariants of fractional Birkhoffian system of Herglotz type
Juan-Juan Ding(丁娟娟), Yi Zhang(张毅). Chin. Phys. B, 2020, 29(4): 044501.
[2] Factors influencing electromagnetic scattering from the dielectric periodic surface
Yinyu Wei(韦尹煜), Zhensen Wu(吴振森), Haiying Li(李海英), Jiaji Wu(吴家骥), Tan Qu(屈檀). Chin. Phys. B, 2019, 28(7): 074101.
[3] Experimentally testing Hardy's theorem on nonlocality with entangled mixed states
Dai-He Fan(樊代和), Mao-Chun Dai(戴茂春), Wei-Jie Guo(郭伟杰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2017, 26(4): 040302.
[4] A new piecewise linear Chen system of fractional-order: Numerical approximation of stable attractors
Marius-F. Danca, M. A. Aziz-Alaoui, Michael Small. Chin. Phys. B, 2015, 24(6): 060507.
[5] Energy dependence on the electric activities of a neuron
Song Xin-Lin, Jin Wu-Yin, Ma Jun. Chin. Phys. B, 2015, 24(12): 128710.
[6] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[7] Noether's theorem for non-conservative Hamilton system based on El-Nabulsi dynamical model extended by periodic laws
Long Zi-Xuan, Zhang Yi. Chin. Phys. B, 2014, 23(11): 114501.
[8] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[9] Fractional differential equations of motion in terms of combined Riemann–Liouville derivatives
Zhang Yi. Chin. Phys. B, 2012, 21(8): 084502.
[10] Cluster synchronization in a network of non-identical dynamic systems
Wu Jian-She, Jiao Li-Cheng, Chen Guan-Rong. Chin. Phys. B, 2011, 20(6): 060503.
[11] The discrete variational principle and the first integrals of Birkhoff systems
Gu Shu-Long, Liu Chuan-Zhang, Zhang Hong-Bin, Chen Li-Qun. Chin. Phys. B, 2007, 16(3): 582-587.
[12] The discrete variational principle in Hamiltonian formalism and first integrals
Zhang Hong-Bin, Chen Li-Qun, Liu Rong-Wan. Chin. Phys. B, 2005, 14(6): 1063-1068.
[13] Discrete variational principle and the first integrals of the conservative holonomic systems in event space     
Zhang Hong-Bin, Chen Li-Qun, Liu Rong-Wan. Chin. Phys. B, 2005, 14(5): 888-892.
[14] First integrals of the discrete nonconservative and nonholonomic systems
Zhang Hong-Bin, Chen Li-Qun, Liu Rong-Wan. Chin. Phys. B, 2005, 14(2): 238-243.
[15] Noether's theorem of a rotational relativistic variable mass system
Fang Jian-Hui, Zhao Song-Qing. Chin. Phys. B, 2002, 11(5): 445-449.
No Suggested Reading articles found!