Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124215    DOI: 10.1088/1674-1056/23/12/124215

A quantum efficiency analytical model for complementary metal–oxide–semiconductor image pixels with a pinned photodiode structure

Cao Chen, Zhang Bing, Wu Long-Sheng, Li Na, Wang Jun-Feng
Xi'an Microelectronics Technology Institute, Xi'an 710071, China
Abstract  A quantum efficiency analytical model for complementary metal–oxide–semiconductor (CMOS) image pixels with a pinned photodiode structure is developed. The proposed model takes account of the non-uniform doping distribution in the N-type region due to the impurity compensation formed by the actual fabricating process. The characteristics of two boundary PN junctions located in the N-type region for the particular spectral response of a pinned photodiode, are quantitatively analyzed. By solving the minority carrier steady-state diffusion equations and the barrier region photocurrent density equations successively, the analytical relationship between the quantum efficiency and the corresponding parameters such as incident wavelength, N-type width, peak doping concentration, and impurity density gradient of the N-type region is established. The validity of the model is verified by the measurement results with a test chip of 160× 160 pixels array, which provides the accurate process with a theoretical guidance for quantum efficiency design in pinned photodiode pixels.
Keywords:  CMOS image sensor      quantum efficiency      pinned photodiode      analytical model  
Received:  18 May 2014      Revised:  24 June 2014      Accepted manuscript online: 
PACS:  42.79.Pw (Imaging detectors and sensors)  
  85.30.-z (Semiconductor devices)  
  78.40.Fy (Semiconductors)  
Fund: Project supported by the National Defense Pre-Research Foundation of China (Grant No. 51311050301095).
Corresponding Authors:  Cao Chen     E-mail:

Cite this article: 

Cao Chen, Zhang Bing, Wu Long-Sheng, Li Na, Wang Jun-Feng A quantum efficiency analytical model for complementary metal–oxide–semiconductor image pixels with a pinned photodiode structure 2014 Chin. Phys. B 23 124215

[1]Shoushun C, Boussaid F and Bermak A 2008 IEEE Sensors Journal 8 286
[2]Chen S, Tang W and Culurciello E 2010 Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), May 30-June 2, 2010, Paris, France, p. 1404
[3]He J, Su Y M, Ma Y T, Chen Q, Wang R N, Ye Y, Ma Y and Liang H L 2012 Chin. Phys. B 21 076104
[4]Goiffon V, Virmontois C, Magnan P, Cervantes P, Place S, Gaillardin M, Girard S, Paillet P, Estribeau M and Martin P 2012 IEEE Trans. Nucl. Sci. 59 918
[5]Raverzzi L, Betta G F, Stoppa D and Simoni A 2000 Microelectronics Journal 31 227
[6]Desai N R, Hoang K V and Sonek G J 1993 IEEE Trans. Education 36 357
[7]Perry R J and Arora K 1996 Proceedings of IEEE Southeastcon Bringing Together Education Science and Technology, April 11-14, 1996, Tampa, USA, p. 374
[8]Djite I, Estribeau M, Magnan P, Rolland G, Petit S and Saint-Pe O 2012 IEEE Trans. Electron. Dev. 59 729
[9]Zeng H M, Wei T C and Zheng R 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), September 14-16, 2011, Xi'an, China, p. 1
[10]Cao C, Zhang B, Wu L S, Li X and Wang J F 2014 Chin. J. Semicond. 35 074012
[11]Liu W J, Chen O T, Dai L K and Weng P K 2001 Proceedings of the 5th IEEE International Workshop on Behavioral Modeling and Simulation, October 10-12, 2001, Santa Rosa, USA, p. 102
[12]Puliyankot V and Hueting R J 2012 IEEE Trans. Electron. Dev. 59 26
[13]Liu E K, Zhu B S and Luo J S 2012 The Physics of Semiconductors (Beijing: Electronics Industry) p. 177 (in Chinese)
[14]Lee P P 2000 U.S. Patent 5 625 210 [2000-08-08]
[15]Liu E K, Zhu B S and Luo J S 2012 The Physics of Semiconductors (Beijing: Electronics Industry) p. 181 (in Chinese)
[16]Ni J H 2008 "CMOS Image Sensors Sensitivity Improvement via Process Optimization" (MS Thesis) (Shanghai: Shanghai Jiao Tong University) (in Chinese)
[17]Wu K, Wei T B, Lan D, Zheng H Y, Wang J X, Luo Y and Li J M 2014 Chin. Phys. B 23 028504
[1] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[2] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[3] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[4] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[5] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[6] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[7] Enhanced performance of AlGaN-based ultraviolet light-emitting diodes with linearly graded AlGaN inserting layer in electron blocking layer
Guang Li(李光), Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Jian Jiang(姜健), Xing-Jun Luo(罗幸君), Jia-Qi Guo(郭佳琦), Long-Fei He(贺龙飞), Kang Zhang(张康), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(5): 058502.
[8] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[9] Analytical model of tilted driver-pickup coils for eddy current nondestructive evaluation
Bing-Hua Cao(曹丙花), Chao Li(李超), Meng-Bao Fan(范孟豹), Bo Ye(叶波), Gui-Yun Tian(田贵云). Chin. Phys. B, 2018, 27(3): 030301.
[10] Total ionizing dose effects in pinned photodiode complementary metal-oxide-semiconductor transistor active pixel sensor
Lin-Dong Ma(马林东), Yu-Dong Li(李豫东), Lin Wen(文林), Jie Feng(冯婕), Xiang Zhang(张翔), Tian-Hui Wang(王田珲), Yu-Long Cai(蔡毓龙), Zhi-Ming Wang(王志铭), Qi Guo(郭旗). Chin. Phys. B, 2018, 27(10): 104207.
[11] Analysis of proton and γ-ray radiation effects on CMOS active pixel sensors
Lindong Ma(马林东), Yudong Li(李豫东), Qi Guo(郭旗), Lin Wen(文林), Dong Zhou(周东), Jie Feng(冯婕), Yuan Liu(刘元), Junzhe Zeng(曾骏哲), Xiang Zhang(张翔), Tianhui Wang(王田珲). Chin. Phys. B, 2017, 26(11): 114212.
[12] Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution
Yu Zhang(张钰), Xinmiao Lu(逯鑫淼), Guangyi Wang(王光义), Yongcai Hu(胡永才), Jiangtao Xu(徐江涛). Chin. Phys. B, 2016, 25(7): 070503.
[13] Comparison of blue-green response between transmission-mode GaAsP-and GaAs-based photocathodes grown by molecular beam epitaxy
Gang-Cheng Jiao(焦岗成), Zheng-Tang Liu(刘正堂), Hui Guo(郭晖), Yi-Jun Zhang(张益军). Chin. Phys. B, 2016, 25(4): 048505.
[14] Modeling of a triple reduced surface field silicon-on-insulator lateral double-diffused metal-oxide-semiconductor field-effect transistor with low on-state resistance
Yu-Ru Wang(王裕如), Yi-He Liu(刘祎鹤), Zhao-Jiang Lin(林兆江), Dong Fang(方冬), Cheng-Zhou Li(李成州), Ming Qiao(乔明), Bo Zhang(张波). Chin. Phys. B, 2016, 25(2): 027305.
[15] Semi-analytical model for quasi-double-layer surface electrode ion traps
Jian Zhang(张见), Shuming Chen(陈书明), Yaohua Wang(王耀华). Chin. Phys. B, 2016, 25(11): 113701.
No Suggested Reading articles found!