Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118802    DOI: 10.1088/1674-1056/23/11/118802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of acetone-soaking treatment on the performance of polymer solar cells based on P3HT/PCBM bulk heterojunction

Liu Yu-Xuan (刘宇譞)a, Lü Long-Feng (吕龙峰)a, Ning Yu (宁宇)a, Lu Yun-Zhang (陆运章)a, Lu Qi-Peng (鲁启鹏)a, Zhang Chun-Mei (张春梅)a, Fang Yi (方一)a, Tang Ai-Wei (唐爱伟)b, Hu Yu-Feng (胡煜峰)a, Lou Zhi-Dong (娄志东)a, Teng Feng (滕枫)a, Hou Yan-Bing (侯延冰)a
a Key Laboratory of Luminescence and Optical Information of the Ministry of Education; Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China;
b Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
Abstract  

The improvement of the acetone-soaking treatment to the performance of polymer solar cells based on the P3HT/PCBM bulk heterojunction is reported. Undergoing acetone-soaking, the PCBM does not distribute uniformly in the vertical direction, a PCBM enrichment layer forms on the top of the active layer, which is beneficial to the collection of the carriers and blocking the inverting diffusion carriers. X-ray photoelectron spectroscopy (XPS) analysis reveals that the PCBM weight ratio on the top of the active layer increases by 20% after the acetone-soaking treatment. Due to the nonuniform distribution of PCBM, the short-circuit current density, the open-circuit voltage, and the fill factor are enhanced significantly. Finally, the power conversion efficiency of the acetone-soaking device increases by 31% compared with the control device.

Keywords:  polymer solar cells      solvent treatment      vertical phase separation      morphology  
Received:  25 February 2014      Revised:  10 May 2014      Accepted manuscript online: 
PACS:  88.40.jr (Organic photovoltaics)  
  84.60.Jt (Photoelectric conversion)  
  64.75.St (Phase separation and segregation in thin films)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61275175, 61177017, and 61377028) and the National Natural Science Foundation of China for Distinguished Yong Scholars (Grant No. 61125505).

Corresponding Authors:  Teng Feng, Hou Yan-Bing     E-mail:  FTeng@bjtu.edu.cn;ybhou@bjtu.edu.cn

Cite this article: 

Liu Yu-Xuan (刘宇譞), Lü Long-Feng (吕龙峰), Ning Yu (宁宇), Lu Yun-Zhang (陆运章), Lu Qi-Peng (鲁启鹏), Zhang Chun-Mei (张春梅), Fang Yi (方一), Tang Ai-Wei (唐爱伟), Hu Yu-Feng (胡煜峰), Lou Zhi-Dong (娄志东), Teng Feng (滕枫), Hou Yan-Bing (侯延冰) Effects of acetone-soaking treatment on the performance of polymer solar cells based on P3HT/PCBM bulk heterojunction 2014 Chin. Phys. B 23 118802

[1] Orimo A, Masuda K, Honda S, Benten H, Ito S, Ohkita H and Tsuji H 2010 Appl. Phys. Lett. 96 43305
[2] Yang B, Tsai M, Cheng W, Chen J, Hsu S L and Chou W 2013 J. Phys. Chem. C 117 14472
[3] Watts B, Belcher W J, Thomsen L, Ade H and Dastoor P C 2009 Macromolecules 42 8392
[4] Xu Z, Chen L M, Yang G W, Huang C H, Hou J H, Wu Y, Li G, Hsu C S and Yang Y 2009 Adv. Funct. Mater. 19 1227
[5] Oklobia O and Shafai T S 2013 Sol. Energy Mater. Sol. Cells 117 1
[6] Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C and Heeger A J 2008 J. Am. Chem. Soc. 130 3619
[7] Yu X, Hu Z Y, Huang Z H, Yu X M, Zhang J J, Zhao G S and Zhao Y 2013 Chin. Phys. B 22 118801
[8] ReeseM O, WhiteM S, Rumbles G, Ginley D S and Shaheen S E 2008 Appl. Phys. Lett. 92 53307
[9] Kim S, Na S, Jo J, Kim D and Nah Y 2008 Appl. Phys. Lett. 93 73307
[10] Qing J, Zhong Z F, Liu Y, Li B J and Zhou X 2014 Chin. Phys. B 23 038802
[11] Li H, Tang H W, Li L G, Xu W T, Zhao X L and Yang X N 2011 J. Mater. Chem. 21 6563
[12] Chen L, Hong Z, Li G and Yang Y 2009 Adv. Mater. 21 1434
[13] Kim Y, Choulis S A, Nelson J, Bradley D D, Cook S and Durrant J R 2005 Appl. Phys. Lett. 86 63502
[14] Muller C, Ferenczi T A M, Campoy-Quiles M, Frost J M, Bradley D D C, Smith P, Stingelin-Stutzmann N and Nelson J 2008 Adv. Mater. 20 3510
[15] Baek W, Yoon T, Lee H H and Kim Y 2010 Org. Electron. 11 933
[16] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[17] Yao Y, Hou J H, Xu Z, Li G and Yang Y 2008 Adv. Funct. Mater. 18 1783
[18] Ouyang J Y and Xia Y J 2009 Sol. Energy Mater. Sol. Cells 93 1592
[19] Jeong J W, Huh J W, Lee J I, Chu H Y, Han I K and Ju B 2010 Curr. Appl. Phys. 10 S520
[20] Clarke T M, Ballantyne A M, Nelson J, Bradley D D and Durrant J R 2008 Adv. Funct. Mater. 18 4029
[21] Miller S, Fanchini G, Lin Y, Li C, Chen C, Su W and Chhowalla M 2008 J. Mater. Chem. 18 306
[22] Li G, Yao Y, Yang H, Shrotriya V, Yang G and Yang Y 2007 Adv. Funct. Mater. 17 1636
[23] Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin P G, Kim Y, Anthopoulos T D, Stavrinou P N, Bradley D and Nelson J 2008 Nat. Mater. 7 158
[24] Germack D S, Chan C K, Kline R J, Fischer D A, Gundlach D J, Toney M F, Richter L J and Delongchamp D M 2010 Macromolecules 43 3828
[25] Parnell A J, Dunbar A D, Pearson A J, Staniec P A, Dennison A J, Hamamatsu H, Skoda M W, Lidzey D G and Jones R 2010 Adv. Mater. 22 2444
[26] Kiel J W, Kirby B J, Majkrzak C F, Maranville B B and Mackay M E 2010 Soft Matter 6 641
[27] Pavlopoulou E, Fleury G, Deribew D, Cousin F, Geoghegan M and Hadziioannou G 2013 Org. Electron. 14 1249
[28] Ruderer M A, Guo S, Meier R, Chiang H, K O Rstgens V, Wiedersich J, Perlich J, Roth S V and Ller-Buschbaum P 2011 Adv. Funct. Mater. 21 3382
[29] Germack D S, Chan C K, Hamadani B H, Richter L J, Fischer D A, Gundlach D J and Delongchamp D M 2009 Appl. Phys. Lett. 94 233303
[30] Xue B, Vaughan B, Poh C, Burke K B, Thomsen L, Stapleton A, Zhou X, Bryant G W, Belcher W and Dastoor P C 2010 J. Phys. Chem. C 114 15797
[31] Brabec C J, Heeney M, Mcculloch I and Nelson J 2011 Chem. Soc. Rev. 40 1185
[32] Skriver H L and Rosengaard N M 1992 Phys. Rev. B 46 7157
[33] Loiudice A, Rizzo A, Latini G, Nobile C, de Giorgi M and Gigli G 2012 Sol. Energy Mater. Sol. Cells 100 147
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[4] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[5] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[6] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[7] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[8] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[9] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[10] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[11] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[12] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[13] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[14] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[15] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
No Suggested Reading articles found!