Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117804    DOI: 10.1088/1674-1056/23/11/117804

Fabrication and temperature-dependent photoluminescence spectra of Zn-Cu-In-S quaternary nanocrystals

Liu Xiao-Juan, Zhang Xiao-Song, Li Lan, Wang Xue-Liang, Yuan Lin-Lin
Institute of Material Physics, Tianjin University of Technology, Tianjin 300384, China

A series of Zn-Cu-In-S nanocrystals (ZCIS NCs) are prepared and the optical properties of the ZCIS NCs are tuned by adjusting the reaction time. It is interesting to observe that the temperature-dependent photoluminescence (PL) spectra of the ZCIS NCs show a redshift with decreasing intensity at low temperature (50-280 K) and a blueshift at high temperature (318-403 K). The blueshift can be explained by the thermally active phonon-assisted tunneling from the excited states of the low-energy emission band to the excited states of the high-energy emission band.

Keywords:  temperature-dependent photoluminescence      photoluminescence lifetime      quaternary nanocrystals      white light emitting device  
Received:  21 March 2014      Revised:  09 May 2014      Published:  15 November 2014
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.55.-m (Photoluminescence, properties and materials)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  78.40.Fy (Semiconductors)  

Project supported by the National Natural Science Foundation of China (Grand Nos. 60907021, 60977035, and 60877029) and the Natural Science Foundation of Tianjin, China (Grant No. 11JCYBJC00300).

Corresponding Authors:  Zhang Xiao-Song     E-mail:

Cite this article: 

Liu Xiao-Juan, Zhang Xiao-Song, Li Lan, Wang Xue-Liang, Yuan Lin-Lin Fabrication and temperature-dependent photoluminescence spectra of Zn-Cu-In-S quaternary nanocrystals 2014 Chin. Phys. B 23 117804

[1] Schlamp M, Peng X G and Alivisatos A 1997 J. App. Phys. 82 5837
[2] Hernández-Borja, Vorobiev Y V and Ramírez-Bon R 2011 Sol. Energ. Mat. Sol. C 95 1882
[3] Li F, Cho S H, Son D I, Park K H and Kim T W 2008 Appl. Phys. Lett. 92 102110
[4] Kannan V and Rhee J K 2012 Appl. Phys. A 108 59
[5] Gardner J S, Shurdha E, Wang C, Lau L D, Rodriguez R G and Pak J J 2007 J. Nanopart. Res. 10 633
[6] Allen P M and Bawendi M G 2008 J. Am. Chem. Soc. 130 9240
[7] Bensebaa F, Durand C, Aouadou A, Scoles L, Du X Wang D and Page Y 2009 J. Nanopart. Res. 12 1897
[8] Pein A, Baghbanzadeh M, Rath T, Haas W, Maier E, Amenitsch H, Hofer F, Kappe C O and Trimmel G 2006 Chem. Mater. 18 3330
[9] Dai M, Ogawa S, Kameyama T, Okazaki K I, Kudo A, Kuwabata S, Tsuboi Y and Torimoto T 2012 J. Mater. Chem. 22 12851
[10] Zhong H Z, Bai Z L and Zou B S 2012 J. Phys. Chem. Lett. 3 3167
[11] Huang S Y, Zhang L D, Li G H, Dai Z H, Zhu X G, Qu F Q, Fu S Q, Zhong Y R and Miao Y 2002 Chin. Phys. Lett. 19 1199
[12] Zhang W J and Zhong X H 2011 Inorg. Chem. 50 4065
[13] Xiang W D, Yang H L, Liang X J, Zhong J S, Wang J, Luo L and Xie C P 2013 J. Mater. Chem. C 1 2014
[14] Liu Y F, Huang F Q, Xie Y, Cui H L, Zhao W, Yang C Y and Dai N 2013 J. Phys. Chem. C 117 10296
[15] Nakamura H, Kato W, Uehara M, Nose K, Omata T, Otsuka-Yao-Matsuo S, Miyazaki M and Maeda H 2006 Chem. Mater. 18 3330
[16] Zhang J, Xie R G and Yang W S 2011 Chem. Mater. 23 3357
[17] Zhang Y, Xie C, Su H P, Liu J, Pickering S, Wang Y Q, Yu W W, Wang J K, Wang Y D, Hahm J I, Dellas N, Mohney S E and Xu J 2011 Nano Lett. 11 329
[18] Liu W Y, Zhang Y, Zhai W W, Wang Y H, Zhang T Q, Gu P F, Chu H R, Zhang H Z, Cui T and Wang Y D 2013 J. Phys. Chem. C 117 19288
[19] Kim J S, Park Y H, Kim S M, Choi J C and Park H L 2005 Solid State Commun. 133 445
[20] Liu B, Shi C S, Zhang Q L and Chen Y H 2002 J. Alloy. Compd. 333 215
[21] Zhang X, Liu Y, Zhi Z, Zhang J, Lu Y, Shen D, Xu W, Fan X and Kong X 2002 J. Lumin. 99 149
[22] Xie R J, Hirosaki N, Kimura N, Sakuma K and Mitomo M 2007 Appl. Phys. Lett. 90 191101
[23] Pejchal J, Nikl M, Mihokova, Novoselov E A, Yoshikawa A and Williams R T 2009 J. Lumin. 129 1857
[24] Brus L E 1983 J. Chem. Phys. 79 5566
[25] Brus L E 1984 J. Chem. Phys. 80 4403
[26] Koc K, Tepehan F Z and Tepehan G G 2011 Chalcogenide. Lett. 8 239
[27] Guo W S, Chen N, Dong C H, Tu Y, Chang J and Zhang B B 2013 RSC. Adv. 3 9470
[28] Wan H K, Ho L M, Whan K T, Yeol Y D and Woo K S 2011 Appl. Phys. Lett. 99 19330.
[29] León-Luis S F, Rodríguez-Mendza U R, Lalla E and Lavín V 2011 Sensor. Actuat. B Chem. 158 208
[30] Zeng H B, Li Z G, Cai W P and Liu P S 2007 J. Appl. Phys. 102 104307
[31] Li Q, Xu S J, Xie M H and Tong S Y 2005 J. Phys.: Condens. Matter 17 4853
[32] Li Q, Xu S J, Cheng W C, Xie M H, Tong S Y, Che C M and Yang H 2001 Appl. Phys. Lett. 79 1810
[33] Xu S J, Li Q, Dong J R and Chua S 2004 Appl. Phys. Lett. 84 2280
[34] Varshni Y P 1967 Physics 34 149
[35] Botha J and Leitch A W R 2000 J. Electron. Mater. 29 1362
[36] Ramvall P, Tanaka S, Nomura S, Riblet P and Aoyagi Y 1999 Appl. Phys. Lett. 75 1935
[37] Wan J, Brebner J, Leonelli R, Zhao G and Graham J 1993 Phys. Rev. B 48 5197
[38] Xu S Y, Zhang X S, Zhou Y L, X Q and Li Lan 2011 Chin. Phys. Lett. 20 037804
[1] Temperature-dependent photoluminescence of size-tunable ZnAgInSe quaternary quantum dots
Qi Ding(丁琪), Xiao-Song Zhang(张晓松), Lan Li(李岚), Jian-Ping Xu(徐建萍), Ping Zhou(周平), Xiao-Fei Dong(董晓菲), Ming Yan(晏明). Chin. Phys. B, 2017, 26(6): 067804.
[2] Temperature-dependent photoluminescence on organic-inorganicmetal halide perovskite CH3NH3PbI3-xClx prepared onZnO/FTO substrates using a two-step method
Shiwei Zhuang(庄仕伟), Deqian Xu(徐德前), Jiaxin Xu(徐佳新), Bin Wu(伍斌), Yuantao Zhang(张源涛), Xin Dong(董鑫), Guoxing Li(李国兴), Baolin Zhang(张宝林), Guotong Du(杜国同). Chin. Phys. B, 2017, 26(1): 017802.
No Suggested Reading articles found!