Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117804    DOI: 10.1088/1674-1056/23/11/117804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fabrication and temperature-dependent photoluminescence spectra of Zn-Cu-In-S quaternary nanocrystals

Liu Xiao-Juan, Zhang Xiao-Song, Li Lan, Wang Xue-Liang, Yuan Lin-Lin
Institute of Material Physics, Tianjin University of Technology, Tianjin 300384, China
Abstract  

A series of Zn-Cu-In-S nanocrystals (ZCIS NCs) are prepared and the optical properties of the ZCIS NCs are tuned by adjusting the reaction time. It is interesting to observe that the temperature-dependent photoluminescence (PL) spectra of the ZCIS NCs show a redshift with decreasing intensity at low temperature (50-280 K) and a blueshift at high temperature (318-403 K). The blueshift can be explained by the thermally active phonon-assisted tunneling from the excited states of the low-energy emission band to the excited states of the high-energy emission band.

Keywords:  temperature-dependent photoluminescence      photoluminescence lifetime      quaternary nanocrystals      white light emitting device  
Received:  21 March 2014      Revised:  09 May 2014      Published:  15 November 2014
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  78.55.-m (Photoluminescence, properties and materials)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  78.40.Fy (Semiconductors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grand Nos. 60907021, 60977035, and 60877029) and the Natural Science Foundation of Tianjin, China (Grant No. 11JCYBJC00300).

Corresponding Authors:  Zhang Xiao-Song     E-mail:  zhangxiaosong022@126.com

Cite this article: 

Liu Xiao-Juan, Zhang Xiao-Song, Li Lan, Wang Xue-Liang, Yuan Lin-Lin Fabrication and temperature-dependent photoluminescence spectra of Zn-Cu-In-S quaternary nanocrystals 2014 Chin. Phys. B 23 117804

[1] Schlamp M, Peng X G and Alivisatos A 1997 J. App. Phys. 82 5837
[2] Hernández-Borja, Vorobiev Y V and Ramírez-Bon R 2011 Sol. Energ. Mat. Sol. C 95 1882
[3] Li F, Cho S H, Son D I, Park K H and Kim T W 2008 Appl. Phys. Lett. 92 102110
[4] Kannan V and Rhee J K 2012 Appl. Phys. A 108 59
[5] Gardner J S, Shurdha E, Wang C, Lau L D, Rodriguez R G and Pak J J 2007 J. Nanopart. Res. 10 633
[6] Allen P M and Bawendi M G 2008 J. Am. Chem. Soc. 130 9240
[7] Bensebaa F, Durand C, Aouadou A, Scoles L, Du X Wang D and Page Y 2009 J. Nanopart. Res. 12 1897
[8] Pein A, Baghbanzadeh M, Rath T, Haas W, Maier E, Amenitsch H, Hofer F, Kappe C O and Trimmel G 2006 Chem. Mater. 18 3330
[9] Dai M, Ogawa S, Kameyama T, Okazaki K I, Kudo A, Kuwabata S, Tsuboi Y and Torimoto T 2012 J. Mater. Chem. 22 12851
[10] Zhong H Z, Bai Z L and Zou B S 2012 J. Phys. Chem. Lett. 3 3167
[11] Huang S Y, Zhang L D, Li G H, Dai Z H, Zhu X G, Qu F Q, Fu S Q, Zhong Y R and Miao Y 2002 Chin. Phys. Lett. 19 1199
[12] Zhang W J and Zhong X H 2011 Inorg. Chem. 50 4065
[13] Xiang W D, Yang H L, Liang X J, Zhong J S, Wang J, Luo L and Xie C P 2013 J. Mater. Chem. C 1 2014
[14] Liu Y F, Huang F Q, Xie Y, Cui H L, Zhao W, Yang C Y and Dai N 2013 J. Phys. Chem. C 117 10296
[15] Nakamura H, Kato W, Uehara M, Nose K, Omata T, Otsuka-Yao-Matsuo S, Miyazaki M and Maeda H 2006 Chem. Mater. 18 3330
[16] Zhang J, Xie R G and Yang W S 2011 Chem. Mater. 23 3357
[17] Zhang Y, Xie C, Su H P, Liu J, Pickering S, Wang Y Q, Yu W W, Wang J K, Wang Y D, Hahm J I, Dellas N, Mohney S E and Xu J 2011 Nano Lett. 11 329
[18] Liu W Y, Zhang Y, Zhai W W, Wang Y H, Zhang T Q, Gu P F, Chu H R, Zhang H Z, Cui T and Wang Y D 2013 J. Phys. Chem. C 117 19288
[19] Kim J S, Park Y H, Kim S M, Choi J C and Park H L 2005 Solid State Commun. 133 445
[20] Liu B, Shi C S, Zhang Q L and Chen Y H 2002 J. Alloy. Compd. 333 215
[21] Zhang X, Liu Y, Zhi Z, Zhang J, Lu Y, Shen D, Xu W, Fan X and Kong X 2002 J. Lumin. 99 149
[22] Xie R J, Hirosaki N, Kimura N, Sakuma K and Mitomo M 2007 Appl. Phys. Lett. 90 191101
[23] Pejchal J, Nikl M, Mihokova, Novoselov E A, Yoshikawa A and Williams R T 2009 J. Lumin. 129 1857
[24] Brus L E 1983 J. Chem. Phys. 79 5566
[25] Brus L E 1984 J. Chem. Phys. 80 4403
[26] Koc K, Tepehan F Z and Tepehan G G 2011 Chalcogenide. Lett. 8 239
[27] Guo W S, Chen N, Dong C H, Tu Y, Chang J and Zhang B B 2013 RSC. Adv. 3 9470
[28] Wan H K, Ho L M, Whan K T, Yeol Y D and Woo K S 2011 Appl. Phys. Lett. 99 19330.
[29] León-Luis S F, Rodríguez-Mendza U R, Lalla E and Lavín V 2011 Sensor. Actuat. B Chem. 158 208
[30] Zeng H B, Li Z G, Cai W P and Liu P S 2007 J. Appl. Phys. 102 104307
[31] Li Q, Xu S J, Xie M H and Tong S Y 2005 J. Phys.: Condens. Matter 17 4853
[32] Li Q, Xu S J, Cheng W C, Xie M H, Tong S Y, Che C M and Yang H 2001 Appl. Phys. Lett. 79 1810
[33] Xu S J, Li Q, Dong J R and Chua S 2004 Appl. Phys. Lett. 84 2280
[34] Varshni Y P 1967 Physics 34 149
[35] Botha J and Leitch A W R 2000 J. Electron. Mater. 29 1362
[36] Ramvall P, Tanaka S, Nomura S, Riblet P and Aoyagi Y 1999 Appl. Phys. Lett. 75 1935
[37] Wan J, Brebner J, Leonelli R, Zhao G and Graham J 1993 Phys. Rev. B 48 5197
[38] Xu S Y, Zhang X S, Zhou Y L, X Q and Li Lan 2011 Chin. Phys. Lett. 20 037804
[1] Temperature-dependent photoluminescence of size-tunable ZnAgInSe quaternary quantum dots
Qi Ding(丁琪), Xiao-Song Zhang(张晓松), Lan Li(李岚), Jian-Ping Xu(徐建萍), Ping Zhou(周平), Xiao-Fei Dong(董晓菲), Ming Yan(晏明). Chin. Phys. B, 2017, 26(6): 067804.
[2] Temperature-dependent photoluminescence on organic-inorganicmetal halide perovskite CH3NH3PbI3-xClx prepared onZnO/FTO substrates using a two-step method
Shiwei Zhuang(庄仕伟), Deqian Xu(徐德前), Jiaxin Xu(徐佳新), Bin Wu(伍斌), Yuantao Zhang(张源涛), Xin Dong(董鑫), Guoxing Li(李国兴), Baolin Zhang(张宝林), Guotong Du(杜国同). Chin. Phys. B, 2017, 26(1): 017802.
No Suggested Reading articles found!