Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117801    DOI: 10.1088/1674-1056/23/11/117801

Homogeneity analysis of sculptured thin films deposited in symmetric style through glancing angle deposition technique

Wang Bina b, Qi Hong-Jia, Sun Weia b, He Juna b, Zhao Jiao-Linga b, Wang Hua b, Hou Yong-Qianga b
a Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b University of Chinese Academy of Sciences, Beijing 100049, China

The symmetric deposition technique is often used to improve the uniformity of sculptured thin film (STF). In this paper, optical properties of STF with the columnar angles ± β are analyzed theoretically, based on the characteristic matrix method for extraordinary waves. Then, the transmittances of uniformity monolayer and bilayer STF in symmetrical style are calculated to show the effect of the bilayer structure on the optical properties of STF. The inhomogeneity of STF is involved in analyzing the differences in transmittance and phase retardation between monolayer and bilayer STF deposited in symmetric style. The results show that optical homogeneity of STF can be improved by depositing in symmetric style at the normal incidence, but it is not the same case as the oblique incidence.

Keywords:  birefringence      dielectric thin films      optical properties  
Received:  10 March 2014      Revised:  11 May 2014      Published:  15 November 2014
PACS:  78.20.Fm (Birefringence)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  42.25.Ja (Polarization)  

Project supported by the National Natural Science Foundation of China (Grant No. 61205211).

Corresponding Authors:  Qi Hong-Ji     E-mail:

Cite this article: 

Wang Bin, Qi Hong-Ji, Sun Wei, He Jun, Zhao Jiao-Ling, Wang Hu, Hou Yong-Qiang Homogeneity analysis of sculptured thin films deposited in symmetric style through glancing angle deposition technique 2014 Chin. Phys. B 23 117801

[1] Wan Y T, Hu H Y, Xia H P, Zhang Y P, Jiang H C and Chen H C 2012 Chin. Opt. Lett. 10 042301
[2] Li L, Fu L, Xu X, Zhai J and Ruan S 2012 Chin. Opt. Lett. 10 311601
[3] Robbie K, Brett M J and Lakhtakia A 1996 Nature 384 616
[4] Macleod H A 2010 Thin-Film Optical Filters (4th edn.) (Boca Rotan: CRC) pp. 13-57
[5] Hodgkinson I J, Hazel J C and Wu Q H 1998 Thin Solid Films 313 368
[6] Motohiro T and Taga Y 1989 Appl. Opt. 28 2466
[7] Siabi-Garjan A, Savaloni H, Abdi F, Ghaffal A and Placido F 2013 Phys. Script. 87 055705
[8] Cao S P, Ye F, Hou B and Xu A Y 2013 Thin Solid Films 545 205
[9] Singh D P, Goel P and Singh J P 2012 J. Appl. Phys. 112 104324
[10] Xiao X D, Dong G P, Shao J D, He H B and Fan Z X 2010 Appl. Surf. Sci. 256 1636
[11] Wang S M, Xia G D, Fu X, He H B, Shao J D and Fan Z X 2007 Thin Solid Films 515 3352
[12] Hou Y Q, Qi H J, Yi K and Shao J D 2013 Chin. Opt. Lett. 11 103101
[13] Fu X Y, Wang S M, Deng D G, Yi K and Fan Z X 2006 Chin. Opt. Lett. 4 247
[14] Qi H J, Wang J P, Erdmann A, Jin Y X, Shao J D and Fan Z X 2010 Seventh International Conference on Thin Film Physics and Applications, September 24, 2010 Shanghai, China p. 799519
[15] Hou Y Q, Li X, He K, Qi H J, Yi K and Shao J D 2013 Chin. Phys. Lett. 30 017802
[16] Qi H J, Hong R J, Yi K, Shao J D and Fan Z X 2005 Appl. Opt. 44 2343
[17] Fu X Y, Yi K, Shao J D and Fan Z X 2008 Chin. Opt. Lett. 6 544
[18] Lakhtakia A and Messier R 2005 Sculptured Thin Films: Nanoengineered Morphology and Optics (Vol. PM143 ) (Washington: SPIE press)
[19] Hodgkinson I J, Wu Q H, Lakhtakia A and McCall M W 2000 Opt. Commun. 177 79
[20] Pursel S M, Horn M W and Lakhtakia A 2007 Opt. Eng. 46 040507
[21] Qi H J, Hou Y Q, Yi K and Shao J D 2013 J. Opt. Soc. Korea 17 33
[22] Venugopal V C 2013 J. Nanophoton. 7 073502
[23] Qi H J, Zhang D P, Shao J D and Fan Z X 2005 Europhys. Lett. 70 257
[24] Qi H J, Shao J D and Fan Z X 2007 Europhys. Lett. 78 17004
[25] Qi H J, Zhu M P, Zhang W L, Yi K, He H B and Shao J D 2012 Chin. Opt. Lett. 10 013104
[26] Qi H J, Xiao X D, He H B, Yi K and Fan Z X 2009 Appl. Opt. 48 127
[27] Xiao X D, Dong G, He H B, Qi H J, Fan Z X and Shao J D 2009 Chin. Opt. Lett. 7 967
[28] Hou Y Q, Qi H J, Li X, He K, Yi K and Shao J D 2013 Chin. Phys. B 22 127801
[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[3] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[4] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[5] Pulse shaping of bright-dark vector soliton pair
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征). Chin. Phys. B, 2020, 29(5): 054202.
[6] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[7] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[8] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[9] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[10] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[11] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[12] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[13] Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells
H Noverola-Gamas, L M Gaggero-Sager, O Oubram. Chin. Phys. B, 2019, 28(12): 124207.
[14] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[15] Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation
Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞). Chin. Phys. B, 2018, 27(5): 057101.
No Suggested Reading articles found!