Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117502    DOI: 10.1088/1674-1056/23/11/117502
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Dynamics of magnetization in ferromagnet with spin-transfer torque

Li Zai-Dong (李再东)a, He Peng-Bin (贺鹏斌)b, Liu Wu-Ming (刘伍明)c
a Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China;
b College of Physics and Microelectronics Science, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082, China;
c Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field.

Keywords:  spin-transfer torque      domain wall      soliton      ferromagnetic resonance  
Received:  26 July 2014      Revised:  24 September 2014      Accepted manuscript online: 
PACS:  75.60.Ch (Domain walls and domain structure)  
  72.25.Ba (Spin polarized transport in metals)  
  75.78.-n (Magnetization dynamics)  
  75.40.Gb (Dynamic properties?)  
Fund: 

Project supported by the Natural Science Foundation of Hebei Province of China (Grant No. A2012202022). P. B. He was supported by the Aid Program for Young Teachers of Hunan University, the Project-sponsored by SRF for ROCS, SEM, and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institution of Hunan Province, China. W. M. Liu was supported by the National Basic Research Program of China (Grant Nos. 2011CB921502 and 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 61227902 and 61378017).

Corresponding Authors:  Li Zai-Dong     E-mail:  lizd2018@live.com

Cite this article: 

Li Zai-Dong (李再东), He Peng-Bin (贺鹏斌), Liu Wu-Ming (刘伍明) Dynamics of magnetization in ferromagnet with spin-transfer torque 2014 Chin. Phys. B 23 117502

[1] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763
[2] Landau L D and Lifshitz E M 1935 Phys. Z. Sowjetunion 8 153
[3] Kosevich A M, Ivanov B A and Kovalev A S 1990 Phys. Rep. 194 117
[4] Mikeska H J and Steiner M 1991 Adv. Phys. 40 191
[5] Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[6] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406
[7] Malozemoff A P and Slonczewski J C 1979 Magnetic Domain Walls in Bubble Material (New York: Academic)
[8] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[9] Berger L 1996 Phys. Rev. B 54 9353
[10] Tatara G, Kohno H and Shibata J 2008 Phys. Rep. 468 213
[11] Bazaliy Y B, Jones B A and Zhang S C 1998 Phys. Rev. B 57 R3213
[12] Tatara G and Kohno H 2004 Phys. Rev. Lett. 92 086601
[13] Li Z and Zhang S 2004 Phys. Rev. Lett. 92 207203
[14] Zhang S, Levy P M and Fert A 2002 Phys. Rev. Lett. 88 236601
[15] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[16] Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[17] Hubert A and Schäferd R 2000 Magnetic Domains: The Analysis of Magnetic Microstructures (New York: Springer)
[18] Ono T, Miyajima H, Shigeto K, Mibu K, Hosoito N and Shinjo T 1999 Science 284 468
[19] Beach G S D, Nistor C, Knutson C, Tsoi M and Erskine J L 2005 Nat. Mater. 4 741
[20] Thomas L, Hayashi M, Jiang X, Moriya R, Rettner C and Parkin S S P 2006 Nature 443 197
[21] Thiaville A, Nakatani Y, Miltat J and Suzuki Y 2005 Europhys. Lett. 69 990
[22] Grollier J, Boulenc P, Cros V, Hamzić A, Vaurès A, Fert A and Faini G 2003 Appl. Phys. Lett. 83 509
[23] Marrows C H 2005 Adv. Phys. 54 585
[24] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[25] Yang J S, Nistor C, Beach G S D and Erskine J L 2008 Phys. Rev. B 77 014413
[26] Wang X R, Yan P and Lu J 2009 Europhys. Lett. 86 67001
[27] Katine J A, Albert F J and Buhrman R A 2000 Phys. Rev. Lett. 84 3149
[28] Arne B, Gerrit E W B and Paul J K 2006 Phys. Rep. 427 157
[29] Li Z and Zhang S 2004 Phys. Rev. B 70 024417
[30] Tsoi M, Jansen A G M, Bass J, ChiangWC, Tsoi V andWyder P 2000 Nature 406 46
[31] Rezende S M, de Aguiar F M and Azevedo A 2006 Phys. Rev. B 73 094402
[32] Li Z, He J and Zhang S 2005 J. Appl. Phys. 97 10C703
[33] Sun J Z, Monsma D J, Abraham D W, Rooks M J and Koch R H 2002 Appl. Phys. Lett. 81 2202
[34] Tsoi M, Tsoi V, Bass J, Jansen A G M and Wyder P 2002 Phys. Rev. Lett. 89 246803
[35] Chen T Y, Ji Y, Chien C L and Stiles M D 2004 Phys. Rev. Lett. 93 026601
[36] Jiang Y, Yu G H, Wang Y B, Teng J, Ochiai T, Tezuka N and Inomata K 2005 Appl. Phys. Lett. 86 192515
[37] Li Z D, Liang J Q, Li L and Liu W M 2004 Phys. Rev. E 69 066611
[38] He P B and Liu W M 2005 Phys. Rev. B 72 064410
[39] He P B, Xie X C and Liu W M 2005 Phys. Rev. B 72 172411
[40] Koo H, Krafft C and Gomez R D 2002 Appl. Phys. Lett. 81 862
[41] Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K and Shinjo T 2004 Phys. Rev. Lett. 92 077205
[42] Saitoh E, Miyajima H, Yamaoka T and Tatara G 2004 Nature 432 203
[43] Lim C K, Devolder T, Chappert C, Grollier J, Cros V, Vaur‘es A, Fert A and Faini G 2004 Appl. Phys. Lett. 84 2820
[44] Ohe J and Kramer B 2006 Phys. Rev. Lett. 96 027204
[45] Waintal X and Viret M 2004 Europhys. Lett. 65 427
[46] Bocklage L, Krüger B, Eiselt R, Bolte M, Fischer P and Meier G 2008 Phys. Rev. B 78 180405
[47] Hayashi M, Thomas L, Rrettner C, Moriya R and Parkin S S P 2007 Nat. Phys. 3 21
[48] Tretiakov O A, Liu Y and Abanov A 2010 Phys. Rev. Lett. 105 217203
[49] Berger L 1978 J. Appl. Phys. 49 2156
[50] Salhi E and Berger L 1993 J. Appl. Phys. 73 6405
[51] Serkin V N and Hasegawa A 2002 IEEE J. Quantum Electron. 8 418
[52] Li Q Y, Li Z D,Wang S X, SongWWand Fu G S 2009 Opt. Commun. 282 1676
[53] Zhao F, Li Z D, He P B, Li Q Y, and Liu W M 2011 Eur. Phys. J. B 84 197
[54] Sun Z Z and Schliemann J 2010 Phys. Rev. Lett. 104 037206
[55] Goussev A, Robbins J M and Slastikov V 2010 Phys. Rev. Lett. 104 147202
[56] Slonczewski J C 1981 J. Magn. Magn. Mater. 23 305
[57] Munthe-Kaas H 1995 BIT 35 572
[58] Engo K 2000 BIT 40 41
[59] Li Z D, Li Q Y, Wang X R, Liu W M, Liang J Q and Fu G S 2010 J. Phys.: Condens. Matter 22 216001
[60] Lakshmanan M and Nakamura K 1984 Phys. Rev. Lett. 53 2497
[61] Yamada Y, Van Drent W P, Abarra E N and Suzuki T 1998 J. Appl. Phys. 83 6527
[62] Belliard L, Miltat J, Kottler V, Mathet V, Chappert C and Valet T 1997 J. Appl. Phys. 81 5315
[63] Hirota R 1973 J. Math. Phys. 14 805
[64] Liu W M, Wu B, Zhou X, Campbell D K, Chui S T and Niu Q 2002 Phys. Rev. B 65 172416
[65] Takeno S 1984 Dynamical Problems in Soliton Systems (Berlin: Springer-Verlag)
[66] Matveev V B and SalliMA 1991 Springer Series in Nonlinear Dynamics (Berlin: Springer)
[67] Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformation in Soliton Theory and its Geometric Applications (Shanghai: Shanghai Scientific and Technical Publishers) (in Chinese)
[68] Li L, Li Z H, Li S Q and Zhou G S 2004 Opt. Commun. 234 169
[69] Li S Q, Li L, Li Z H and Zhou G S 2004 J. Opt. Soc. Am. B 21 2089
[70] Zhao F, Li Z D, Li Q Y, Wen L, Fu G S and Liu W M 2012 Ann. Phys. 327 2085
[71] Yan P, Wang X S and Wang X R 2011 Phys. Rev. Lett. 107 177207
[72] Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
[73] Li Z D, Li Q Y, He P B, Bai Z G and Sun Y B 2007 Ann. Phys. 322 2945
[74] Myers E B, Ralph D C, Katine J A, Louie R N and Buhrman R A 1999 Science 285 867
[75] Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature 425 380
[76] Lee K J, Deac A, Redon O, Nozi‘eres J P and Dieny B 2004 Nat. Mater. 3 877
[77] Tulapurkar A A, Suzuki Y, Fukushima A, Kubota H, Maehara H, Tsunekawa K, Djayaprawira D D, Watanabe N and Yuasa S 2005 Nature 438 339
[78] Sankey J C, Braganca P M, Garcia A G F, Krivorotov I N, Buhrman R A and Ralph D C 2006 Phys. Rev. Lett. 96 227601
[79] Fuchs G D, Sankey J C, Pribiag V S, Qian L, Braganca P M, Garcia A G F, Ryan E M, Li Z P, Ozatay O, Ralph D C and Buhrman R A 2007 Appl. Phys. Lett. 91 062507
[80] Chen W, Beaujour J M L, De Loubens G, Kent A D and Sun J Z 2008 Appl. Phys. Lett. 92 012507
[81] Kubota H, Fukushima A, Yakushiji K, Nagahama T, Yuasa S, Anda K, Maehara H, Nagamine Y, Tsunekawa K, Djayaprawira D D, Watanabe N and Suzuki Y 2008 Nat. Phys. 4 37
[82] Sankey J C, Cui Y T, Sun J Z, Slonczewski J C, Buhrman R A and Ralph D C 2008 Nat. Phys. 4 67
[83] Xi H W, Shi Y M and Gao K Z 2005 J. Appl. Phys. 97 03390
[84] Torresa L, Finocchio G, Lopez-Diaz L, Martinez E, Carpentieri M, Consolo G and Azzerboni B 2007 J. Appl. Phys. 101 09A502
[85] Kupferschmidt J N, Adam S and Brouwer P W 2006 Phys. Rev. B 74 134416
[86] Kovalev A A, Bauer G EWand Brataas A 2007 Phys. Rev. B 75 014430
[87] Farle M 1998 Rep. Prog. Phys. 61 755
[88] Shin S C and Agarwala A K 1988 J. Appl. Phys. 63 3645
[89] Layadi A 1999 J. Appl. Phys. 86 1625
[90] Layadi A 2001 Phys. Rev. B 63 174410
[91] Gao K Z and Bertram H N 2002 IEEE Trans. Magn. 38 3675
[92] Wang J P, Zou Y Y, Hee C H, Chong T C and Zheng Y F 2003 IEEE Trans. Magn. 39 1930
[93] Zou Y Y, Wang J P, Hee C H and Chong T C 2003 Appl. Phys. Lett. 82 2473
[94] Wang J P 2005 Nat. Mater. 4 191
[95] Albrecht M, Hu G, Guhr I L, Ulbrich T C and Boneberg J 2005 Nat. Mater. 4 203
[96] Singh A K, Yin J, Ko H Y Y and Suzuki T 2006 J. Appl. Phys. 99 08E704
[97] Zhou Y, Zha C L, Bonetti S, Persson J and Åermanb J 2008 Appl. Phys. Lett. 92 262508
[98] Sbiaa R, Law R, Tan Ei L and Liew T 2009 J. Appl. Phys. 105 013910
[99] He P B, Li Z D, Pan A L, Wan Q, Zhang Q L, Wang R X, Wang Y G, Liu W M and Zou B S 2008 Phys. Rev. B 78 054420
[100] He P B, Li Z D, Pan A L, Wan Q, Zhang Q L, Wang R X, Wang Y G, Liu W M and Zou B S 2009 J. Appl. Phys. 105 043908
[101] Wang R X, He P B, Li Z D, Pan A L and Liu Q H 2011 J. Appl. Phys. 109 039905
[102] Mangin S, Ravelosona D, Katine J A, CareyMJ, Terris B D and Fullerton E E 2006 Nat. Mater. 5 210
[103] Seki T, Mitani S, Yakushiji K and Takanashi K 2006 Appl. Phys. Lett. 89 172504
[104] Urazhdin S, Birge Norman O, Pratt W P and Jr Bass J 2003 Phys. Rev. Lett. 91 146803
[105] Petit S, Baraduc C, Thirion C, Ebels U, Liu Y, Li M,Wang P and Dieny B 2007 Phys. Rev. Lett. 98 077203
[106] Li Z, Zhang S, Diao Z, Ding Y, Tang X, Apalkov D M, Yang Z, Kawabata K and Huai Y 2008 Phys. Rev. Lett. 100 246602
[107] Deac A M, Fukushima A, Kubota H, Maehara H, Suzuki Y, Yuasa S, Nagamine Y, Tsunekawa K, Djayaprawira D D and Watanabe N 2008 Nat. Phys. 4 803
[108] Zeng Z M, Upadhyaya P, Khalili Amiri P, Cheung K H, Katine J A, Langer J, Wang K L and Jiang H W 2011 Appl. Phys. Lett. 99 032503
[109] Zhou Y and Åkerman J 2009 Appl. Phys. Lett. 94 112503
[110] Zhang Z Z, Qiu Y C, Jin Q Y and Liu Y W 2010 Appl. Phys. Lett. 97 172501
[111] Zhou Y 2011 J. Appl. Phys. 109 023916
[112] Meng H and Wang J P 2006 Appl. Phys. Lett. 88 172506
[113] Kent A D, Öyilmaz B and Hel B E 2004 Appl. Phys. Lett. 84 3897
[114] Lee K J, Redon O and Dieny B 2005 Appl. Phys. Lett. 86 022505
[115] Bazaliy Ya B, Jones B A and Zhang S C 2001 J. Appl. Phys. 89 6793
[116] Grollier J, Cros V, Jaffr‘es H, Hamzic A, George J M, Faini G, Ben Youssef J, Le Gall H and Fert A 2003 Phys. Rev. B 67 174402
[117] Morise H and Nakamura S 2005 Phys. Rev. B 71 014439
[118] Wang R X, He P B, Liu Q H, Li Z D, Pan A L, Zou B S and Wang Y G 2010 J. Magn. Magn. Mater. 322 2264
[119] Wang R X, Zhao J L, He P B, Gu G N, Li Z D, Pan A L and Liu Q H 2013 J. Magn. Magn. Mater. 327 132
[120] Stiles M D and Miltat J 2006 in Spin Dynamics in Confined Magntic Structures Ⅲ (Ed. Hillebrands B and Thiaville A) (New York: Springer)
[121] Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B and Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436
[122] Zhou Y, Bonetti S, Zha C L and Åkerman J 2009 New J. Phys. 11 103028
[123] Bertotti G, Serpico C, Mayergoyz I D, Magni A, d’Aquino M and Bonin R 2005 Phys. Rev. Lett. 94 127206
[124] Perko L 1996 Differential Equations and Dynamical Systems (New York: Springer)
[125] Bertotti G, Bonin R, Serpico C, d’Aquino M and Mayergoyz I D 2009 J. Appl. Phys. 105 07D104
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[6] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[7] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[8] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[9] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[10] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[11] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[12] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[13] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[14] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!