Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117502    DOI: 10.1088/1674-1056/23/11/117502
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Dynamics of magnetization in ferromagnet with spin-transfer torque

Li Zai-Donga, He Peng-Binb, Liu Wu-Mingc
a Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China;
b College of Physics and Microelectronics Science, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082, China;
c Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field.

Keywords:  spin-transfer torque      domain wall      soliton      ferromagnetic resonance  
Received:  26 July 2014      Revised:  24 September 2014      Published:  15 November 2014
PACS:  75.60.Ch (Domain walls and domain structure)  
  72.25.Ba (Spin polarized transport in metals)  
  75.78.-n (Magnetization dynamics)  
  75.40.Gb (Dynamic properties?)  

Project supported by the Natural Science Foundation of Hebei Province of China (Grant No. A2012202022). P. B. He was supported by the Aid Program for Young Teachers of Hunan University, the Project-sponsored by SRF for ROCS, SEM, and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institution of Hunan Province, China. W. M. Liu was supported by the National Basic Research Program of China (Grant Nos. 2011CB921502 and 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 61227902 and 61378017).

Corresponding Authors:  Li Zai-Dong     E-mail:

Cite this article: 

Li Zai-Dong, He Peng-Bin, Liu Wu-Ming Dynamics of magnetization in ferromagnet with spin-transfer torque 2014 Chin. Phys. B 23 117502

[1] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763
[2] Landau L D and Lifshitz E M 1935 Phys. Z. Sowjetunion 8 153
[3] Kosevich A M, Ivanov B A and Kovalev A S 1990 Phys. Rep. 194 117
[4] Mikeska H J and Steiner M 1991 Adv. Phys. 40 191
[5] Gilbert T L 2004 IEEE Trans. Magn. 40 3443
[6] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406
[7] Malozemoff A P and Slonczewski J C 1979 Magnetic Domain Walls in Bubble Material (New York: Academic)
[8] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[9] Berger L 1996 Phys. Rev. B 54 9353
[10] Tatara G, Kohno H and Shibata J 2008 Phys. Rep. 468 213
[11] Bazaliy Y B, Jones B A and Zhang S C 1998 Phys. Rev. B 57 R3213
[12] Tatara G and Kohno H 2004 Phys. Rev. Lett. 92 086601
[13] Li Z and Zhang S 2004 Phys. Rev. Lett. 92 207203
[14] Zhang S, Levy P M and Fert A 2002 Phys. Rev. Lett. 88 236601
[15] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[16] Serkin V N, Hasegawa A and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[17] Hubert A and Schäferd R 2000 Magnetic Domains: The Analysis of Magnetic Microstructures (New York: Springer)
[18] Ono T, Miyajima H, Shigeto K, Mibu K, Hosoito N and Shinjo T 1999 Science 284 468
[19] Beach G S D, Nistor C, Knutson C, Tsoi M and Erskine J L 2005 Nat. Mater. 4 741
[20] Thomas L, Hayashi M, Jiang X, Moriya R, Rettner C and Parkin S S P 2006 Nature 443 197
[21] Thiaville A, Nakatani Y, Miltat J and Suzuki Y 2005 Europhys. Lett. 69 990
[22] Grollier J, Boulenc P, Cros V, Hamzić A, Vaurès A, Fert A and Faini G 2003 Appl. Phys. Lett. 83 509
[23] Marrows C H 2005 Adv. Phys. 54 585
[24] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[25] Yang J S, Nistor C, Beach G S D and Erskine J L 2008 Phys. Rev. B 77 014413
[26] Wang X R, Yan P and Lu J 2009 Europhys. Lett. 86 67001
[27] Katine J A, Albert F J and Buhrman R A 2000 Phys. Rev. Lett. 84 3149
[28] Arne B, Gerrit E W B and Paul J K 2006 Phys. Rep. 427 157
[29] Li Z and Zhang S 2004 Phys. Rev. B 70 024417
[30] Tsoi M, Jansen A G M, Bass J, ChiangWC, Tsoi V andWyder P 2000 Nature 406 46
[31] Rezende S M, de Aguiar F M and Azevedo A 2006 Phys. Rev. B 73 094402
[32] Li Z, He J and Zhang S 2005 J. Appl. Phys. 97 10C703
[33] Sun J Z, Monsma D J, Abraham D W, Rooks M J and Koch R H 2002 Appl. Phys. Lett. 81 2202
[34] Tsoi M, Tsoi V, Bass J, Jansen A G M and Wyder P 2002 Phys. Rev. Lett. 89 246803
[35] Chen T Y, Ji Y, Chien C L and Stiles M D 2004 Phys. Rev. Lett. 93 026601
[36] Jiang Y, Yu G H, Wang Y B, Teng J, Ochiai T, Tezuka N and Inomata K 2005 Appl. Phys. Lett. 86 192515
[37] Li Z D, Liang J Q, Li L and Liu W M 2004 Phys. Rev. E 69 066611
[38] He P B and Liu W M 2005 Phys. Rev. B 72 064410
[39] He P B, Xie X C and Liu W M 2005 Phys. Rev. B 72 172411
[40] Koo H, Krafft C and Gomez R D 2002 Appl. Phys. Lett. 81 862
[41] Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K and Shinjo T 2004 Phys. Rev. Lett. 92 077205
[42] Saitoh E, Miyajima H, Yamaoka T and Tatara G 2004 Nature 432 203
[43] Lim C K, Devolder T, Chappert C, Grollier J, Cros V, Vaur‘es A, Fert A and Faini G 2004 Appl. Phys. Lett. 84 2820
[44] Ohe J and Kramer B 2006 Phys. Rev. Lett. 96 027204
[45] Waintal X and Viret M 2004 Europhys. Lett. 65 427
[46] Bocklage L, Krüger B, Eiselt R, Bolte M, Fischer P and Meier G 2008 Phys. Rev. B 78 180405
[47] Hayashi M, Thomas L, Rrettner C, Moriya R and Parkin S S P 2007 Nat. Phys. 3 21
[48] Tretiakov O A, Liu Y and Abanov A 2010 Phys. Rev. Lett. 105 217203
[49] Berger L 1978 J. Appl. Phys. 49 2156
[50] Salhi E and Berger L 1993 J. Appl. Phys. 73 6405
[51] Serkin V N and Hasegawa A 2002 IEEE J. Quantum Electron. 8 418
[52] Li Q Y, Li Z D,Wang S X, SongWWand Fu G S 2009 Opt. Commun. 282 1676
[53] Zhao F, Li Z D, He P B, Li Q Y, and Liu W M 2011 Eur. Phys. J. B 84 197
[54] Sun Z Z and Schliemann J 2010 Phys. Rev. Lett. 104 037206
[55] Goussev A, Robbins J M and Slastikov V 2010 Phys. Rev. Lett. 104 147202
[56] Slonczewski J C 1981 J. Magn. Magn. Mater. 23 305
[57] Munthe-Kaas H 1995 BIT 35 572
[58] Engo K 2000 BIT 40 41
[59] Li Z D, Li Q Y, Wang X R, Liu W M, Liang J Q and Fu G S 2010 J. Phys.: Condens. Matter 22 216001
[60] Lakshmanan M and Nakamura K 1984 Phys. Rev. Lett. 53 2497
[61] Yamada Y, Van Drent W P, Abarra E N and Suzuki T 1998 J. Appl. Phys. 83 6527
[62] Belliard L, Miltat J, Kottler V, Mathet V, Chappert C and Valet T 1997 J. Appl. Phys. 81 5315
[63] Hirota R 1973 J. Math. Phys. 14 805
[64] Liu W M, Wu B, Zhou X, Campbell D K, Chui S T and Niu Q 2002 Phys. Rev. B 65 172416
[65] Takeno S 1984 Dynamical Problems in Soliton Systems (Berlin: Springer-Verlag)
[66] Matveev V B and SalliMA 1991 Springer Series in Nonlinear Dynamics (Berlin: Springer)
[67] Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformation in Soliton Theory and its Geometric Applications (Shanghai: Shanghai Scientific and Technical Publishers) (in Chinese)
[68] Li L, Li Z H, Li S Q and Zhou G S 2004 Opt. Commun. 234 169
[69] Li S Q, Li L, Li Z H and Zhou G S 2004 J. Opt. Soc. Am. B 21 2089
[70] Zhao F, Li Z D, Li Q Y, Wen L, Fu G S and Liu W M 2012 Ann. Phys. 327 2085
[71] Yan P, Wang X S and Wang X R 2011 Phys. Rev. Lett. 107 177207
[72] Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
[73] Li Z D, Li Q Y, He P B, Bai Z G and Sun Y B 2007 Ann. Phys. 322 2945
[74] Myers E B, Ralph D C, Katine J A, Louie R N and Buhrman R A 1999 Science 285 867
[75] Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature 425 380
[76] Lee K J, Deac A, Redon O, Nozi‘eres J P and Dieny B 2004 Nat. Mater. 3 877
[77] Tulapurkar A A, Suzuki Y, Fukushima A, Kubota H, Maehara H, Tsunekawa K, Djayaprawira D D, Watanabe N and Yuasa S 2005 Nature 438 339
[78] Sankey J C, Braganca P M, Garcia A G F, Krivorotov I N, Buhrman R A and Ralph D C 2006 Phys. Rev. Lett. 96 227601
[79] Fuchs G D, Sankey J C, Pribiag V S, Qian L, Braganca P M, Garcia A G F, Ryan E M, Li Z P, Ozatay O, Ralph D C and Buhrman R A 2007 Appl. Phys. Lett. 91 062507
[80] Chen W, Beaujour J M L, De Loubens G, Kent A D and Sun J Z 2008 Appl. Phys. Lett. 92 012507
[81] Kubota H, Fukushima A, Yakushiji K, Nagahama T, Yuasa S, Anda K, Maehara H, Nagamine Y, Tsunekawa K, Djayaprawira D D, Watanabe N and Suzuki Y 2008 Nat. Phys. 4 37
[82] Sankey J C, Cui Y T, Sun J Z, Slonczewski J C, Buhrman R A and Ralph D C 2008 Nat. Phys. 4 67
[83] Xi H W, Shi Y M and Gao K Z 2005 J. Appl. Phys. 97 03390
[84] Torresa L, Finocchio G, Lopez-Diaz L, Martinez E, Carpentieri M, Consolo G and Azzerboni B 2007 J. Appl. Phys. 101 09A502
[85] Kupferschmidt J N, Adam S and Brouwer P W 2006 Phys. Rev. B 74 134416
[86] Kovalev A A, Bauer G EWand Brataas A 2007 Phys. Rev. B 75 014430
[87] Farle M 1998 Rep. Prog. Phys. 61 755
[88] Shin S C and Agarwala A K 1988 J. Appl. Phys. 63 3645
[89] Layadi A 1999 J. Appl. Phys. 86 1625
[90] Layadi A 2001 Phys. Rev. B 63 174410
[91] Gao K Z and Bertram H N 2002 IEEE Trans. Magn. 38 3675
[92] Wang J P, Zou Y Y, Hee C H, Chong T C and Zheng Y F 2003 IEEE Trans. Magn. 39 1930
[93] Zou Y Y, Wang J P, Hee C H and Chong T C 2003 Appl. Phys. Lett. 82 2473
[94] Wang J P 2005 Nat. Mater. 4 191
[95] Albrecht M, Hu G, Guhr I L, Ulbrich T C and Boneberg J 2005 Nat. Mater. 4 203
[96] Singh A K, Yin J, Ko H Y Y and Suzuki T 2006 J. Appl. Phys. 99 08E704
[97] Zhou Y, Zha C L, Bonetti S, Persson J and Åermanb J 2008 Appl. Phys. Lett. 92 262508
[98] Sbiaa R, Law R, Tan Ei L and Liew T 2009 J. Appl. Phys. 105 013910
[99] He P B, Li Z D, Pan A L, Wan Q, Zhang Q L, Wang R X, Wang Y G, Liu W M and Zou B S 2008 Phys. Rev. B 78 054420
[100] He P B, Li Z D, Pan A L, Wan Q, Zhang Q L, Wang R X, Wang Y G, Liu W M and Zou B S 2009 J. Appl. Phys. 105 043908
[101] Wang R X, He P B, Li Z D, Pan A L and Liu Q H 2011 J. Appl. Phys. 109 039905
[102] Mangin S, Ravelosona D, Katine J A, CareyMJ, Terris B D and Fullerton E E 2006 Nat. Mater. 5 210
[103] Seki T, Mitani S, Yakushiji K and Takanashi K 2006 Appl. Phys. Lett. 89 172504
[104] Urazhdin S, Birge Norman O, Pratt W P and Jr Bass J 2003 Phys. Rev. Lett. 91 146803
[105] Petit S, Baraduc C, Thirion C, Ebels U, Liu Y, Li M,Wang P and Dieny B 2007 Phys. Rev. Lett. 98 077203
[106] Li Z, Zhang S, Diao Z, Ding Y, Tang X, Apalkov D M, Yang Z, Kawabata K and Huai Y 2008 Phys. Rev. Lett. 100 246602
[107] Deac A M, Fukushima A, Kubota H, Maehara H, Suzuki Y, Yuasa S, Nagamine Y, Tsunekawa K, Djayaprawira D D and Watanabe N 2008 Nat. Phys. 4 803
[108] Zeng Z M, Upadhyaya P, Khalili Amiri P, Cheung K H, Katine J A, Langer J, Wang K L and Jiang H W 2011 Appl. Phys. Lett. 99 032503
[109] Zhou Y and Åkerman J 2009 Appl. Phys. Lett. 94 112503
[110] Zhang Z Z, Qiu Y C, Jin Q Y and Liu Y W 2010 Appl. Phys. Lett. 97 172501
[111] Zhou Y 2011 J. Appl. Phys. 109 023916
[112] Meng H and Wang J P 2006 Appl. Phys. Lett. 88 172506
[113] Kent A D, Öyilmaz B and Hel B E 2004 Appl. Phys. Lett. 84 3897
[114] Lee K J, Redon O and Dieny B 2005 Appl. Phys. Lett. 86 022505
[115] Bazaliy Ya B, Jones B A and Zhang S C 2001 J. Appl. Phys. 89 6793
[116] Grollier J, Cros V, Jaffr‘es H, Hamzic A, George J M, Faini G, Ben Youssef J, Le Gall H and Fert A 2003 Phys. Rev. B 67 174402
[117] Morise H and Nakamura S 2005 Phys. Rev. B 71 014439
[118] Wang R X, He P B, Liu Q H, Li Z D, Pan A L, Zou B S and Wang Y G 2010 J. Magn. Magn. Mater. 322 2264
[119] Wang R X, Zhao J L, He P B, Gu G N, Li Z D, Pan A L and Liu Q H 2013 J. Magn. Magn. Mater. 327 132
[120] Stiles M D and Miltat J 2006 in Spin Dynamics in Confined Magntic Structures Ⅲ (Ed. Hillebrands B and Thiaville A) (New York: Springer)
[121] Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B and Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436
[122] Zhou Y, Bonetti S, Zha C L and Åkerman J 2009 New J. Phys. 11 103028
[123] Bertotti G, Serpico C, Mayergoyz I D, Magni A, d’Aquino M and Bonin R 2005 Phys. Rev. Lett. 94 127206
[124] Perko L 1996 Differential Equations and Dynamical Systems (New York: Springer)
[125] Bertotti G, Bonin R, Serpico C, d’Aquino M and Mayergoyz I D 2009 J. Appl. Phys. 105 07D104
[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[3] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[4] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[5] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[6] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[7] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[8] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[9] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[10] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[11] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[12] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[13] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[14] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[15] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
No Suggested Reading articles found!