Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 105202    DOI: 10.1088/1674-1056/23/10/105202

A radial non-uniform helicon equilibrium discharge model

Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Helicon discharges have attracted great attention in the electric propulsion community in recent years. To acquire the equilibrium properties, a self-consistent model is developed, which combines the helicon/Trivelpiece-Gould (TG) waves-plasma interaction mechanism and the plasma flow theory under the confinement of the magnetic field. The calculations reproduce the central peak density phenomenon observed in the experiments. The results show that when operating in the wave coupling mode, high magnetic field strength B0 results in the deviation of the central density versus B0 from the linear relationship, while the density rise becomes flatter as the radiofrequency (rf) input power Prf grows, and the electron temperature Te radial profile is mainly determined by the characteristic of the rf energy deposition. The model could provide suggestions in choosing the B0 and Prf for medium power helicon thrusters.
Keywords:  helicon discharges      magnetic field      radial properties      thruster     
Received:  30 January 2014      Published:  15 October 2014
PACS:  52.75.Di (Ion and plasma propulsion)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  02.60.Cb (Numerical simulation; solution of equations)  
  88.85.J- (Vehicle energy storage)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11305265).
Corresponding Authors:  Wang Mo-Ge     E-mail:
About author:  52.75.Di; 52.50.Qt; 02.60.Cb; 88.85.J-

Cite this article: 

Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang A radial non-uniform helicon equilibrium discharge model 2014 Chin. Phys. B 23 105202

[1]Longmier B W, Cassady L D, Ballenger M G, Carter M D, Chang-Diaz F R, Glover T W, Ilin A V, McCaskill G E, Olsen C S and Jared P Squire 2011 J. Prop. Power 27 915
[2]Sheth R B, Ungar E K and Chambliss J P 2012 42nd International Conference on Environmental Systems, July 15-19, San Diego, USA, AIAA 2012-3497
[3]Cheng K and Pan W X 2009 Chin. Phys. Lett. 26 1252013
[4]Zhang R, Zhang D X, Zhang F, He Z and Wu J J 2013 Acta Phys. Sin. 62 025207 (in Chinese)
[5]West M D, Charles C and Boswell R W 2009 J. Phys. D: Appl. Phys. 42 245021
[6]Takahashi K, Lafleur T, Charles C, Alexander P, Boswell R W, Perren M, Laine R, Pottinger S, Lappas V, Harle T and Lamprou D 2011 Appl. Phys. Lett. 98 141503
[7]Batishchev O V 44th AIAA/ASME/SAE/ASEE 2008 Joint Propulsion Conference & Exhibit, July 21-23, Harford CT, USA, AIAA 2008-5293
[8]Beal B E and FabianM 2007 International Electric Propulsion Conference, September 17-20, Florence, Italy, 2007-162
[9]Palmer D D, Walker M L R, Manete M, Johan C, Cristina B and Daniele P 2008 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 21-23, Harford CT, USA, AIAA 2008-4925
[10]Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095
[11]Boswell R W and Chen F F 1997 IEEE Trans. Plasma Sci. 25 1229
[12]Chen F F and Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245
[13]Shamrai K P and Taranov V B 1994 Plasma Phys. Control Fusion 36 1719
[14]Shamrai K P and Taranov V B 1995 Phys. Lett. A 204 139
[15]Shamrai K P and Taranov V B 1996 Plasma Sources Sci. Technol. 5 474
[16]Shamrai K P, Pavlenko V P and Taranov V B 1997 Plasma Phys. Control Fusion 39 505
[17]Blackwell D D, madziwa T G, Arnush D and Chen F F 2002 Phys. Rev. Lett. 88 145002
[18]Suwon Cho 1996 Phys. Plasmas 3 4268
[19]Arnush D and Chen F F 1998 Phys. Plasmas 5 1239
[20]Shamrai K P and Shinohara S 2001 Phys. Plasmas 8 4659
[21]Suwon Cho 1999 Phys. Plasmas 6 359
[22]Lieberman M A and Litchtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley-Interscience), translated in Chinese by Pi Y K, et al. (in Chinese)
[23]Fruchtman A, Makrinich G and Ashkenazy J 2005 Plasma Sources Sci. Technol. 14 152
[24]Ahedo E 2009 Phys. Plasmas 16 113503
[25]Ahedo E and Jaume Navalarro-cavalle 2013 Phys. Plasmas 20 043512
[26]Curreli D and Chen F F 2011 Phys. Plasmas 18 113501
[27]Chen F F and Curreli D 2013 Phys. Plasmas 20 057102
[28]Hooper E B 1993 J. Prop. Power 9 757
[29]Ahedo E and Merino M 2010 Phys. Plasmas 17 073501
[30]Gilland J, Breun R and Hershkowitz N 1998 Plasma Source Sci. Technol. 7 416
[31]Toki K, Shinohara S, Tanikawa T and Shamrai K P 2006 Thin Solid Films 506-507 597
[32]Chen F F 2007 Plasma Sources Sci. Technol. 16 593
[1] Research of influence of the additional electrode on Hall thruster plume by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2020, 29(9): 095204.
[2] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[3] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[4] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
[5] Electrical properties of Ca3-xSmxCo4O9+δ ceramics preparedunder magnetic field
Xiu-Rong Qu(曲秀荣), Yan-Yan Xu(徐岩岩), Shu-Chen Lü(吕树臣), Jian-Min Hu(胡建民). Chin. Phys. B, 2020, 29(4): 046103.
[6] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[7] The E×B drift instability in Hall thruster using 1D PIC/MCC simulation
Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti. Chin. Phys. B, 2020, 29(2): 025204.
[8] Investigation on plasma structure evolution and discharge characteristics of a single-stage planar-pulsed-inductive accelerator under ambient fill condition
Xiao-Kang Li(李小康), Bi-Xuan Che(车碧轩), Mou-Sen Cheng(程谋森), Da-Wei Guo(郭大伟), Mo-Ge Wang(王墨戈), and Yun-Tian Yang(杨云天). Chin. Phys. B, 2020, 29(11): 115201.
[9] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[10] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
[11] Axial magnetic field effect in numerical analysis of high power Cherenkov free electron laser
F Bazouband, B Maraghechi. Chin. Phys. B, 2019, 28(6): 064101.
[12] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
[13] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
[14] Magnetochemistry and chemical synthesis
Lin Hu(胡林), Guoliang Xia(夏国良), Qianwang Chen(陈乾旺). Chin. Phys. B, 2019, 28(3): 037102.
[15] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
No Suggested Reading articles found!