Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104205    DOI: 10.1088/1674-1056/23/10/104205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase control of group-velocity-based biexciton coherence ina multiple quantum well nanostructure

Seyyed Hossein Asadpour, H. Rahimpour Soleimani
Department of Physics, University of Guilan, Rasht, Iran
Abstract  A double cascade-type four-level multiple-quantum-well-based exciton-biexciton transitions are proposed. The study is carried out on a 4.8-nm ZnSe single-quantum well which is embedded into ZnMgSSe cladding layers and pseudomorphically grown by molecular beam epitaxy on a (0 0 1) GaAs substrate. It is displayed that the exciton spin relaxation and relative phases between applied fields can influence the transient and steady-state behaviors of absorption, dispersion, and group velocity of two weak probe and signal fields. Also, transient behaviors of electron population of different levels are discussed. It is found that the probe or signal amplification occurs in the absence of population inversion.
Keywords:  exciton-spin relaxation      biexciton coherence      relative phase between applied fields  
Received:  08 January 2014      Revised:  05 March 2014      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.65.-k (Nonlinear optics)  
Corresponding Authors:  Seyyed Hossein Asadpour     E-mail:  S.Hosein.Asadpour@gmail.com
About author:  42.50.-p; 42.65.-k

Cite this article: 

Seyyed Hossein Asadpour, H. Rahimpour Soleimani Phase control of group-velocity-based biexciton coherence ina multiple quantum well nanostructure 2014 Chin. Phys. B 23 104205

[65]Peng Y G and Zheng Y J 2008 Appl. Phys. Lett. 92 092120
[1]Knight J C, Birks T A, Russell P S J and Atkin D M 1996 Opt. Lett. 21 1547
[66]Wang D S and Zheng Y J 2011 Phys. Rev. A 83 013810
[2]Zhang L, Li S G, Yao Y Y, Fu B, Zhang M Y and ZhengY 2010 Acta Phys. Sin. 59 1101 (in Chinese)
[67]Kang H S, Hernandez G and Zhang J P 2006 Phys. Rev. A 73 011802
[3]Li H, Wang T J and Huang D X 2004 Chin. Phys. 13 1033
[4]Lou S Q, Wang Z, Ren G B and Jian S S 2004 Chin. Phys. 13 1493
[5]Li S G, Hou L T and Liu X D 2004 Acta Phys. Sin. 53 1880 (in Chinese)
[6]Li S G, Liu X D and Hou L T 2004 Acta Phys. Sin. 53 1873 (in Chinese)
[7]Dong H, Wu C Q and Fu S N 2004 Chin. Phys. 13 1291
[8]Habib M S, Habib M S, Razzak S M A and Hossain M A 2013 Opt. Fiber Techinol. 19 461
[68]Yan W, Wang T and Li X M 2012 Opt. Commun. 285 3559
[69]Yan W, Wang T, Li X M and Jin Y J 2012 J. Mod. Opt. 59 784
[9]Nakajima K, Zhou J, Tajima K, Kurokawa K, Fukai C and Sankawa I 2005 J. Lightwave Technol. 23 7
[70]Yan W, Wang T, Li X M, Dong C, Yu C and Tang J 2013 Phys. Status Solidi B 250 1384
[10]Matsui T, Nakajima K, Goto Y and Kurashima T 2011 Opt. Soc. Am. 50 6261
[11]Yan H F, Yu Z Y, Tian H D, Liu Y M and Han L H 2010 Acta Phys. Sin. 59 3273 (in Chinese)
[71]Boyd R W and Gauthier D J 2002 Prog. Opt. 43 497
[12]Ademgil H and Haxha S 2009 Opt. Commun. 282 2831
[13]Zhang X, Hu M L, Song Y J, Chai L and Wang Q Y 2010 Acta Phys. Sin. 59 1863 (in Chinese)
[72]Hu X M, Cheng G L, Zou J H, Li X and Du D 2005 Phys. Rev. A 72 023803
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[3] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[4] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[9] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[10] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[11] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[12] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[15] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
No Suggested Reading articles found!