Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 100504    DOI: 10.1088/1674-1056/23/10/100504
GENERAL Prev   Next  

Finite-time sliding mode synchronization of chaotic systems

Ni Jun-Kang, Liu Chong-Xin, Liu Kai, Liu Ling
a State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;
b School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  A new finite-time sliding mode control approach is presented for synchronizing two different topological structure chaotic systems. With the help of the Lyapunov method, the convergence property of the proposed control strategy is discussed in a rigorous manner. Furthermore, it is mathematically proved that our control strategy has a faster convergence speed than the conventional finite-time sliding mode control scheme. In addition, the proposed control strategy can ensure the finite-time synchronization between the master and the slave chaotic systems under internal uncertainties and external disturbances. Simulation results are provided to show the speediness and robustness of the proposed scheme. It is worth noticing that the proposed control scheme is applicable for secure communications.
Keywords:  finite-time control      sliding mode control      chaos synchronization      secure communication  
Received:  23 February 2014      Revised:  06 April 2014      Published:  15 October 2014
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51177117 and 51307130) and the Creative Research Groups Fund of the National Natural Science Foundation of China (Grant No. 51221005).
Corresponding Authors:  Ni Jun-Kang,Liu Ling     E-mail:  max12391@126.com;liul@mail.xjtu.edu.cn
About author:  05.45.Gg; 05.45.Xt; 05.45.Pq

Cite this article: 

Ni Jun-Kang, Liu Chong-Xin, Liu Kai, Liu Ling Finite-time sliding mode synchronization of chaotic systems 2014 Chin. Phys. B 23 100504

[1]Wang X Y, Zhang N, Ren X L and Zhang Y L 2011 Chin. Phys. B 20 020507
[2]Tang Y, Fang J A and Miao Q Y 2009 Neurocomputing 72 1694
[3]Blasius B, Huppert A and Stone L 1999 Nature 399 354
[4]Schäfer C, Rosenblum M G, Abel H H and Kurths J 1999 Phys. Rev. E 60 857
[5]Argyris A, Syvridis D, Larger L, Annovazzi L V, Colet P, Fischer I, García O J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
[6]Fischer I, Liu Y and Davis P 2000 Phys. Rev. A 62 011801
[7]Iu H H C and Tse C K 2000 IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 47 913
[8]Wang X Y and Zhang H 2013 Chin. Phys. B 22 048902
[9]Xie Q X and Chen G R 2002 Math. Comput. Model. 35 145
[10]Chen G R and Dong X N 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific) pp. 537-617, ISBN: 9810225695 9789810225698
[11]Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[12]Agiza H N and Yassen M T 2001 Phys. Lett. A 278 191
[13]Chai Y, Lu L and Chen L Q 2012 Chin. Phys. B 21 030506
[14]Liu J G 2013 Chin. Phys. B 22 060510
[15]Wang Y J, Hao J N and Zuo Z Q 2010 Phys. Lett. A 374 2024
[16]Salarieh H and Alasty A 2009 Commun. Nonlinear Sci. Numer. Simul. 14 508
[17]Kwon O M, Park M J, Park J H, Lee S M and Cha E J 2013 Chin. Phys. B 22 110504
[18]Wang D F, Zhang J Y and Wang X Y 2013 Chin. Phys. B 22 100504
[19]Kuntanapreeda S 2009 Phys. Lett. A 373 2837
[20]Wang X Y and Song J M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3351
[21]Yau H T and Shieh C S 2008 Nonlinear Anal. Real World Appl. 9 1800
[22]Liu L, Liang D L and Liu C X 2012 Nonlinear Dyn. 69 1929
[23]Zhu D R, Liu C X and Yan B N 2012 Chin. Phys. B 21 090509
[24]Chuang C F, Sun Y J and Wang W J 2012 Chaos 22 043108
[25]Cai N, Li W Q and Jing Y W 2011 Nonlinear Dyn. 64 385
[26]Liu P 2013 Chin. Phys. B 22 070501
[27]Gholizadeh H, Hassannia A and Azarfar A 2013 Chin. Phys. B 22 010503
[28]Aghababa M P and Feizi H 2012 Trans. Inst. Meas. Control 34 990
[29]Vincent U E and Guo R 2011 Phys. Lett. A 375 2322
[30]Wang H, Zhang X L, Wang X H and Zhu X J 2012 Nonlinear Dyn. 69 1941
[31]Wang D F, Zhang J Y and Wang X Y 2013 Chin. Phys. B 22 040507
[32]Wang H, Han Z Z, Xie Q Y and Zhang W 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2728
[33]Yang L and Yang J Y 2011 Commun. Nonlinear Sci. Numer. Simul. 16 2405
[34]Liu Y F, Yang X G, Miao D and Yuan R P 2007 Acta Phys. Sin. 56 6250 (in Chinese)
[35]Aghababa M P, Khanmohammadi S and Alizadeh G 2011 Appl. Math. Model. 35 3080
[36]Li S H and Tian Y P 2003 Chaos, Solitons and Fractals 15 303
[37]Aghababa M P and Feizi H 2012 Chin. Phys. B 21 060506
[38]Zhao Z S, Zhang J and Sun L K 2013 ISRN Appl. Math. 2013 320180
[39]Slotine J and Li W 1991 Applied Nonlinear Control (New Jersey: Prentice Hall), ISBN: 0-13-040890-5
[40]Liu C X 2011 Theory and Application of Fractional Order Chaotic Circuit (Xi'an: Xi'an Jiaotong University Press) p. 21 (in Chinese), ISBN: 9787560525921
[41]Liu C X, Liu T, Liu L and Liu K 2004 Chaos, Solitons and Fractals 22 1031
[42]Lorenz E N 1963 J. Atmos. Sci. 20 130
[1] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[2] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[3] Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control
Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东). Chin. Phys. B, 2018, 27(1): 010202.
[4] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[5] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[6] Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch
Safa Khari, Zahra Rahmani, Behrooz Rezaie. Chin. Phys. B, 2016, 25(5): 050201.
[7] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng, Li Sheng-Gang, Sun Ye-Guo, Wang Hong-Xing. Chin. Phys. B, 2015, 24(9): 090505.
[8] Secure communication based on spatiotemporal chaos
Ren Hai-Peng, Bai Chao. Chin. Phys. B, 2015, 24(8): 080503.
[9] A long-distance quantum key distribution scheme based on pre-detection of optical pulse with auxiliary state
Quan Dong-Xiao, Zhu Chang-Hua, Liu Shi-Quan, Pei Chang-Xing. Chin. Phys. B, 2015, 24(5): 050309.
[10] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke, Wang Zhi-Hui, Gao Li-Ke, Sun Yue, Ma Tie-Dong. Chin. Phys. B, 2015, 24(3): 030504.
[11] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying, Feng Xiu-Qin, Yao Zhi-Hai, Jia Hong-Yang. Chin. Phys. B, 2015, 24(11): 110503.
[12] Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer
Chen Qiang, Nan Yu-Rong, Zheng Heng-Huo, Ren Xue-Mei. Chin. Phys. B, 2015, 24(11): 110504.
[13] Reactionless robust finite-time control for manipulation of passive objects by free-floating space robots
Guo Sheng-Peng, Li Dong-Xu, Meng Yun-He, Fan Cai-Zhi. Chin. Phys. B, 2014, 23(5): 054502.
[14] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming, Tang Yong-Guang, Chai Yong-Quan, Wu Feng. Chin. Phys. B, 2014, 23(10): 100501.
[15] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
No Suggested Reading articles found!