Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010203    DOI: 10.1088/1674-1056/23/1/010203
GENERAL Prev   Next  

Nonlocal symmetry, optimal systems, and explicit solutions of the mKdV equation

Xin Xiang-Peng (辛祥鹏), Miao Qian (苗倩), Chen Yong (陈勇)
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China
Abstract  The nonlocal symmetry of the mKdV equation is obtained from the known Lax pair; it is successfully localized to Lie point symmetries in the enlarged space by introducing suitable auxiliary dependent variables. For the closed prolongation of the nonlocal symmetry, the details of the construction for a one-dimensional optimal system are presented. Furthermore, using the associated vector fields of the obtained symmetry, we give the reductions by the one-dimensional sub-algebras and the explicit analytic interaction solutions between cnoidal waves and kink solitary waves, which provide a way to study the interactions among these types of ocean waves. For some of the interesting solutions, the figures are given to show their properties.
Keywords:  nonlocal symmetry      optimal system      prolonged system      explicit solutions  
Received:  15 May 2013      Revised:  07 June 2013      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
  02.20.-a (Group theory)  
  04.20.Jb (Exact solutions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075055 and 11275072), the Innovative Research Team Program of the National Natural Science Foundation of China (Grant No. 61021004), the National High Technology Research and Development Program of China (Grant No. 2011AA010101), and the Shanghai Knowledge Service Platform for Trustworthy Internet of Things, China (Grant No. ZF1213).
Corresponding Authors:  Chen Yong     E-mail:  ychen@sei.ecnu.edu.cn

Cite this article: 

Xin Xiang-Peng (辛祥鹏), Miao Qian (苗倩), Chen Yong (陈勇) Nonlocal symmetry, optimal systems, and explicit solutions of the mKdV equation 2014 Chin. Phys. B 23 010203

[1] Bluman G W, Cheviakov A F and Anco S C 2010 Applications of Symmetry Methods to Partial Differential Equations (New York: Springer)
[2] Bluman G W and Reid G I 1988 IMA J. Appl. Math. 40 87
[3] Akhatov I S, Gazizov R K and Ibragimov N K 1991 J. Sov. Math. 55 1401
[4] Galas F 1992 J. Phys. A: Math. Gen. 25 L981
[5] Lou S Y 1997 J. Phys. A: Math. Phys. 30 4803
[6] Lou S Y and Hu X B 1997 J. Phys. A: Math. Gen. 30 L95
[7] Lou S Y and Hu X B 1993 Chin. Phys. Lett. 10 577
[8] Hu X B and Lou S Y 2000 Proceedings of Institute of Mathematics of NAS of Ukraine 30 120
[9] Guthrie G A 1994 Proc. R. Soc. London, Ser. A 446 107
[10] Guthrie G A and Hickman M S 1993 J. Math. Phys. 34 193
[11] Krasilshchik I S and Vinogradov A M 1984 Acta Appl. Math. 2 79
[12] Bluman G W and Cheviakov A F 2005 J. Math. Phys. 46 123506
[13] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Springer-Verlag)
[14] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
[15] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[16] Lie S 1881 Arch. Math. 6 328
[17] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
[18] Olver P J 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer)
[19] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Boston, MA: Reidel)
[20] Chen Y and Dong Z Z 2009 Nonlinear Anal. 71 e810
[21] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[22] Dong Z Z, Chen Y and Lang Y H 2010 Chin. Phys. B 19 090205
[23] Dong Z Z, Chen Y, Kong D X and Wang Z G 2012 Chin. Ann. Math. Ser. B 33 309
[24] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[25] Zhang H P, Li B and Chen Y 2010 Chin. Phys. B 19 060302
[26] Nucci M C 1989 J. Phys. A: Math. Gen. 22 2897
[9] Guthrie G A 1994 Proc. R. Soc. London, Ser. A 446 107
[10] Guthrie G A and Hickman M S 1993 J. Math. Phys. 34 193
[11] Krasilshchik I S and Vinogradov A M 1984 Acta Appl. Math. 2 79
[12] Bluman G W and Cheviakov A F 2005 J. Math. Phys. 46 123506
[13] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Springer-Verlag)
[14] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
[15] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[16] Lie S 1881 Arch. Math. 6 328
[17] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
[18] Olver P J 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer)
[19] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Boston, MA: Reidel)
[20] Chen Y and Dong Z Z 2009 Nonlinear Anal. 71 e810
[21] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[22] Dong Z Z, Chen Y and Lang Y H 2010 Chin. Phys. B 19 090205
[23] Dong Z Z, Chen Y, Kong D X and Wang Z G 2012 Chin. Ann. Math. Ser. B 33 309
[24] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[25] Zhang H P, Li B and Chen Y 2010 Chin. Phys. B 19 060302
[26] Nucci M C 1989 J. Phys. A: Math. Gen. 22 2897
[1] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[2] Nonlocal symmetry and exact solutions of the (2+1)-dimensional modified Bogoyavlenskii-Schiff equation
Li-Li Huang(黄丽丽), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(6): 060201.
[3] Nonlocal symmetries, consistent Riccati expansion integrability, and their applications of the (2+1)-dimensional Broer-Kaup-Kupershmidt system
Hu Xiao-Rui (胡晓瑞), Chen Yong (陈勇). Chin. Phys. B, 2015, 24(9): 090203.
[4] New solutions from nonlocal symmetry of the generalized fifth order KdV equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博). Chin. Phys. B, 2015, 24(8): 080202.
[5] Nonlocal symmetries and negative hierarchies related to bilinear Bäcklund transformation
Hu Xiao-Rui (胡晓瑞), Chen Yong (陈勇). Chin. Phys. B, 2015, 24(3): 030201.
[6] An extension of the modified Sawada–Kotera equation and conservation laws
He Guo-Liang(何国亮) and Geng Xian-Guo(耿献国) . Chin. Phys. B, 2012, 21(7): 070205.
[7] Solitons for the cubic–quintic nonlinear Schrödinger equation with varying coefficients
Chen Yuan-Ming(陈元明), Ma Song-Hua(马松华), and Ma Zheng-Yi(马正义) . Chin. Phys. B, 2012, 21(5): 050510.
[8] Symmetry groups and spiral wave solution of a wave propagation equation
Zhang Quan-Ju (张全举), Qu Chang-Zheng (屈长征). Chin. Phys. B, 2002, 11(3): 207-212.
No Suggested Reading articles found!