Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090309    DOI: 10.1088/1674-1056/22/9/090309
GENERAL Prev   Next  

Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity

Wang Zhi-Huia, Zhu Longa, Su Shi-Leia, Guo Qib, Cheng Liu-Yongb, Zhu Ai-Donga, Zhang Shoua
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China;
b Center for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  We propose a method to construct an optical cluster-state analyzer based on cross-Kerr nonlinearity combined with linear optics elements. In the scheme, we employ two four-qubit parity gates and the controlled phase gate (CPG) from only the cross-Kerr nonlinearity and show that all the orthogonal four-qubit cluster states can be completely identified. The scheme is significant for the large-scale quantum communication and quantum information processing networks. In addition, the scheme is feasible and deterministic under current experimental conditions.
Keywords:  cluster-state analyzer      quantum information      parity gate      cross-Kerr nonlinearity     
Received:  25 December 2012      Published:  26 July 2013
PACS:  03.67.-a (Quantum information)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60667001 and 11165015).
Corresponding Authors:  Zhang Shou     E-mail:

Cite this article: 

Wang Zhi-Hui, Zhu Long, Su Shi-Lei, Guo Qi, Cheng Liu-Yong, Zhu Ai-Dong, Zhang Shou Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity 2013 Chin. Phys. B 22 090309

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootter W K 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[3] Lo H K and Chau H F 1999 Science 283 2050
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[6] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[7] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[8] Engel H A and Loss D 2005 Science 309 586
[9] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[10] Zhang X L, Feng M and Gao K L 2006 Phys. Rev. A 73 014301
[11] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[12] Pan J W and Zeilinger A 1998 Phys. Rev. A 57 2208
[13] Qian J, Feng X L and Gong S Q 2005 Phys. Rev. A 72 052308
[14] Zou X B, Pahlke K and Mathis W 2002 Phys. Rev. A 66 014102
[15] Walborn S P, Pádua S and Monken C H 2003 Phys. Rev. A 68 042313
[16] Kim Y H and Grice W P 2003 Phys. Rev. A 68 062305
[17] Kok P and Lovett B 2010 Introduction to Optical Quantum Information Processing (London: Cambridge University Press)
[18] Munro W J, Nemoto K and Spiller T P 2005 New. J. Phys. 7 137
[19] Milburn G J 1989 Phys. Rev. Lett. 62 2124
[20] Lukin M D and Imamoglu A 2000 Phys. Rev. Lett. 84 1419
[21] Friedler I, Kurizki G and Petrosyan D 2005 Phys. Rev. A 71 023803
[22] Sun H, Feng X L, Gong S Q and Oh C H 2009 Phys. Rev. B 79 193404
[23] Dür W and Briegel H J 2004 Phys. Rev. Lett. 92 180403
[24] Walther P, Aspelmeyer M, Resch K J and Zeilinger A 2005 Phys. Rev. Lett. 95 020403
[25] Kiesel N, Schmid C, Weber U, Tóth G, Gühne O, Ursin R and Wein-furter H 2005 Phys. Rev. Lett. 95 210502
[26] Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
[27] Zhang W, Liu Y M, Liu J and Zhang Z J 2008 Chin. Phys. B 17 3203
[28] Zhong L Y, Guo Q, Cheng L Y, Su S L, Wang H F and Zhang S 2012 Opt. Commun. 285 4616
[29] Si Bin, Su S L, Sun L L, Cheng L Y, Wang H F and Zhang S 2013 Chin. Phys. B 22 030305
[30] Zhu L, Su S L, Guo Q, Cheng L Y, Wang H F and Zhang S 2013 Quantum Information Process. 12 2749
[31] Choudhury S, Muralidharan S and Panigrahi P K 2009 J. Phys. A 42 115303
[32] Vitali D, Fortunato M and Tombesi P 2000 Phys. Rev. Lett. 85 445
[33] Wang X W, Zhang Y D, Tang S Q and Xie L J 2012 Quantum Inf. Process. 12 1065
[34] Chen Y F, Wang C Y, Wang S H and Yu I A 2006 Phys. Rev. Lett. 96 043603
[35] Li S J, Yang X D, Cao X M, Zhang C H, Xie C D and Wang H 2008 Phys. Rev. Lett. 101 073602
[1] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[2] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[3] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[4] A method to calculate effective Hamiltonians in quantum information
Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏). Chin. Phys. B, 2019, 28(11): 110305.
[5] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[6] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[7] Entangled-photons generation with quantum dots
Yuan Li(李远), Fei Ding(丁飞), Oliver G Schmidt. Chin. Phys. B, 2018, 27(2): 020307.
[8] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
[9] Determining spatial structures of ion crystals by simulated annealing method
Wen-Bo Wu(武文博), Chun-Wang Wu(吴春旺), Jian Li(李剑), Bao-Quan Ou(欧保全), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2017, 26(8): 080303.
[10] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[11] Experimental simulation of violation of the Wright inequality by coherent light
Feng Zhu(朱锋), Wei Zhang(张巍), Yidong Huang(黄翊东). Chin. Phys. B, 2017, 26(10): 100302.
[12] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
[13] Quantum information entropy for one-dimensional system undergoing quantum phase transition
Xu-Dong Song(宋旭东), Shi-Hai Dong(董世海), Yu Zhang(张宇). Chin. Phys. B, 2016, 25(5): 050302.
[14] Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long Zhang(张海龙), Chun Zhou(周淳), Jian-Hong Shi(史建红), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2016, 25(4): 040304.
[15] Fidelity spectrum: A tool to probe the property of a quantum phase
Wing Chi Yu, Shi-Jian Gu. Chin. Phys. B, 2016, 25(3): 030501.
No Suggested Reading articles found!