Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 084201    DOI: 10.1088/1674-1056/22/8/084201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An all-optical buffer based on polarization rotation in an EAM

Wang Kui-Ru (王葵如), Kuang Hai (匡海), Wang Yong-Jun (王拥军), Yuan Jin-Hui (苑金辉), Yan Bin-Bin (颜玢玢)
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P. O. Box 72, Beijing 100876, China
Abstract  A theoretical model of the refractive index changes of the TE and TM modes in an electro-absorption modulator (EAM) is deduced. The photon absorption and refractive index changes are analyzed numerically. The influence of pump intensity on the phase difference between the TE and TM modes is studied. The polarization rotation effect is obtained in the EAM, and a novel all-optical fiber loop buffer is designed.
Keywords:  electro-absorption modulator      polarization rotation effect      all-optical fiber loop buffer  
Received:  06 January 2013      Revised:  06 February 2013      Accepted manuscript online: 
PACS:  42.25.Ja (Polarization)  
  42.25.Lc (Birefringence)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61077014) and the National Basic Research Program of China (Grant No. 2010CB327601).
Corresponding Authors:  Wang Kui-Ru     E-mail:  krwang@bupt.edu.cn

Cite this article: 

Wang Kui-Ru (王葵如), Kuang Hai (匡海), Wang Yong-Jun (王拥军), Yuan Jin-Hui (苑金辉), Yan Bin-Bin (颜玢玢) An all-optical buffer based on polarization rotation in an EAM 2013 Chin. Phys. B 22 084201

[1] Liu A M, Wu C Q and Wang X Y 2001 Photon Technology 1 204
[2] Zhang L J, Wu C Q and Li Y J 2007 Acta Opt. Sin. 27 1945
[3] Li Y M, Hu W X, Cheng B W, Liu Z and Wang Q M 2012 Chin. Phys. Lett. 29 034205
[4] Jia L M and Chen G X 2007 Opt. Commun. Technol. 31 41
[5] Ji Y, Li Y, Wu J, Zhang F Z, Xu K, Li W, Hong X B and Lin J T 2012 IEEE Photon. Technol. Lett. 24 64
[6] Liao Z Y, Yang H and Wang W 2008 Chin. Phys. B 17 2557
[7] Wang Y, Pan J Q, Zhao L J, Zhu H L and Wang W 2010 Chin. Phys. B 19 124215
[8] Zhang Y X, Liao Z Y, Zhao L J, Pan J Q, Zhu H L and Wang W 2010 Chin. Phys. B 19 074216
[9] Bouchaib H, Zhang X P, Jiang W, Wu K, Liu T J, Xu T F, Nie Q H and Xu K 2011 IEEE Photon. Technol. Lett. 23 230
[10] Li H F 2009 Opto-Electronic Engineering 36 85
[11] Huo L, Yang Y F, Nan Y B, Lou C Y and Gao Y Z 2006 Lightwave Technology 24 3035
[12] Liu E K, Zhu P S and Luo J S 2011 Semiconductor Physics, 7th edn. (Beijing: National Defense Industry Press) p. 254
[13] Brian R B, Richard A S and Jesus A D A 1990 Quantum Electronics 26 113
[14] Chen K J, Yang A L and Jiang X Q 2002 Opt. Instrum. 24 86
[15] Zhou S L, Chong Y Z, Huang Y Q and Ren X M 2005 Semicond. Technol. 30 20
[16] Brain R B and Richard A S 1987 Quantum Electron 23 2159
[1] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[2] Design of novel three port optical gates scheme for the integration of large optical cavity electroabsorption modulators and evanescently-coupled photodiodes
Liao Zai-Yi(廖栽宜), Yang Hua(杨华), and Wang Wei(王圩) . Chin. Phys. B, 2008, 17(7): 2557-2561.
No Suggested Reading articles found!