Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080401    DOI: 10.1088/1674-1056/22/8/080401
GENERAL Prev   Next  

Effects of the symmetry energy slope on the axial oscillations of neutron stars

Wen De-Hua, Zhou Ying
Department of Physics, South China University of Technology, Guangzhou 510641, China
Abstract  The impact of symmetry energy slope L on the axial w-mode oscillations is explored, where the range of the constrained slope L of symmetry energy at saturation density is adopted from 25 MeV to 115 MeV while keeping the equation of state (EOS) of symmetric nuclear matter fixed. Based on the range of the symmetry energy slope, a constraint on the frequency and damping time of the wI-mode of the neutron star is given. It is found that there is a perfect linear relation between the frequency and the stellar mass for a fixed slope L, and the softer symmetry energy corresponds to a higher frequency. Moreover, it is confirmed that both the frequencies and damping times have a perfect universal scaling behavior for the EOSs with different symmetry energy slopes at saturation density.
Keywords:  symmetry energy      neutron star      oscillation     
Received:  28 November 2012      Published:  27 June 2013
PACS:  04.40.Dg (Relativistic stars: structure, stability, and oscillations)  
  26.60.-c (Nuclear matter aspects of neutron stars)  
  97.60.Jd (Neutron stars)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10947023 and 11275073), the Fundamental Research Funds for the Central Universities (Grant No. 2012ZZ0079), and sponsored by SRF for ROCS, SEM. This research has made use of NASA's Astrophysics Data System.
Corresponding Authors:  Wen De-Hua     E-mail:  wendehua@scut.edu.cn

Cite this article: 

Wen De-Hua, Zhou Ying Effects of the symmetry energy slope on the axial oscillations of neutron stars 2013 Chin. Phys. B 22 080401

[1] Thorne K S and Campolattaro A 1967 ApJ 149 591
[2] Lindblom L and Detweiler S 1983 ApJS 53 73
[3] Chandrasekhar S and Ferrari V 1991 Proc. R. Soc. Lond. A 432 247
[4] Chandrasekhar S and Ferrari V 1991 Proc. R. Soc. Lond. A 434 449
[5] Kokkotas K D and Schutz B F 1992 MNRAS 255 119
[6] Andersson N and Kokkotas K D 1998 MNRAS 299 1059
[7] Benhar O, Berti E and Ferrari V 1999 MNRAS 310 797
[8] Wen D H, Li B A and Krastev P G 2009 Phys. Rev. C 80 025801
[9] Lattimer J M and Prakash M 2004 Science 304 536
[10] Lattimer J M and Prakash M 2007 Phys. Rep. 442 109
[11] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
[12] Wen D H and Chen W 2011 Chin. Phys. B 20 029701
[13] Wen D H 2010 Chin. Phys. Lett. 27 010401
[14] Xiao Z G, Li B A, Chen L W, Yong G C and Zhang M 2009 Phys. Rev. Lett. 102 062502
[15] Tsang M B, Zhang Y X, Danielewicz P, Famiano M, Li Z X, Lynch W G and Steiner A W 2009 Phys. Rev. Lett. 102 122701
[16] Centelles M, Roca-Maza X, Vinas X and Warda M 2009 Phys. Rev. Lett. 102 122502
[17] Lehaut G, Gulminelli F and Lopez O 2009 Phys. Rev. Lett. 102 142503
[18] Chen L W, Ko C M and Li B A 2005 Phys. Rev. Lett. 94 032701
[19] Li B A and Chen L W 2005 Phys. Rev. C 72 064611
[20] Shetty D V, Yennello S J and Souliotis G A 2007 Phys. Rev. C 76 024606
[21] Klimkiewicz A et al. 2007 Phys. Rev. C 76 051603
[22] Danielewicz P and Lee J 2007 AIPC Conf. Proc. 947 301
[23] Chen L W, Ko C M, Li B A and Xu J 2010 Phys. Rev. C 82 024321
[24] Xu C, Li B A and Chen L W 2010 Phys. Rev. C 82 054607
[25] Newton W G, Gearheart M and Li B A 2011 arXiv: 1110.4043v1
[26] Wen D H, Newton W G and Li B A 2012 Phys. Rev. C 85 025801
[27] Chen L W, Cai B J, Ko C M, Li B A, Shen C and Xu J 2009 Phys. Rev. C 80 014322
[28] Liu M, Wang N, Li Z X and Zhang F S 2012 Phys. Rev. C 82 064306
[29] Roca-Maza X, Centelles M, Vinas X and Warda M 2011 Phys. Rev. Lett. 106 252501
[30] Steiner A W and Gandolfi S 2012 Phys. Rev. Lett. 108 081102
[31] Hebeler K, Lattimer J M, Pethick C J and Schwenk A 2010 Phys. Rev. Lett. 105 161102
[32] Gandolfi S, Carlson J and Reddy S 2012 Phys. Rev. C 85 032801
[33] Demorest P B, Pennucci T, Ransom S M, Roberts M S E and Hessels J W T 2010 Nature 467 1081
[34] Steiner A W, Lattimer J M and Brown E F 2010 Astrophys. J. 722 33
[35] Leins Nollert H P and Soffel M H 1993 Phys. Rev. D 48 3467
[36] Wen D H, Yan J and Liu X M 2012 Chin. Phys. B 21 060402
[37] Tsui L K and Leung P T 2005 MNRAS 357 1029
[1] Potential dynamic analysis of tumor suppressor p53 regulated by Wip1 protein
Nan Liu(刘楠), Dan-Ni Wang(王丹妮), Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), Lian-Gui Yang(杨联贵). Chin. Phys. B, 2020, 29(6): 068704.
[2] Generating mechanism of pathological beta oscillations in STN-GPe circuit model: A bifurcation study
Jing-Jing Wang(王静静), Yang Yao(姚洋), Zhi-Wei Gao(高志伟), Xiao-Li Li(李小俚), Jun-Song Wang(王俊松). Chin. Phys. B, 2020, 29(5): 058701.
[3] Hydrodynamic simulation of chaotic dynamics in InGaAs oscillator in terahertz region
Wei Feng(冯伟). Chin. Phys. B, 2020, 29(4): 047302.
[4] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[5] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[6] Fluctuation of arc plasma in arc plasma torch with multiple cathodes
Zelong Zhang(张泽龙), Cheng Wang(王城), Qiang Sun(孙强), Weidong Xia(夏维东). Chin. Phys. B, 2019, 28(9): 095201.
[7] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[8] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
[9] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[10] Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony
Fangdong Tang(汤方栋), Qianheng Du(杜乾衡), Cedomir Petrovic, Wei Zhang(张威), Mingquan He(何明全), Liyuan Zhang(张立源). Chin. Phys. B, 2019, 28(3): 037104.
[11] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[12] Shock oscillation in highly underexpanded jets
Xiao-Peng Li(李晓鹏), Rui Zhou(周蕊), Xiao-Ping Chen(陈小平), Xue-Jun Fan(范学军), Guo-Shan Xie(谢国山). Chin. Phys. B, 2018, 27(9): 094705.
[13] Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity
Han Cai(蔡涵), Qi-Chun Liu(刘其春), Chang-Hao Zhao(赵昌昊), Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(8): 084207.
[14] Quantum oscillation measurements in high magnetic field and ultra-low temperature
Pu Wang(王瀑), Gang Li(李岗), Jian-Lin Luo(雒建林). Chin. Phys. B, 2018, 27(7): 077101.
[15] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
No Suggested Reading articles found!