Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 076601    DOI: 10.1088/1674-1056/22/7/076601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Study of lattice thermal conductivity of alpha-zirconium by molecular dynamics simulation

Wu Tian-Yu (武天宇), Lai Wen-Sheng (赖文生), Fu Bao-Qin (付宝勤)
Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  The non-equilibrium molecular dynamics method is adapted to calculate the phonon thermal conductivity of alphazirconium.By exchanging velocities of atoms in different regions, the stable heat flux and the temperature gradient are established to calculate the thermal conductivity. The phonon thermal conductivities under different conditions, such as different heat exchange frequencies, different temperatures, different crystallographic orientations, and crossing grain boundary (GB), are studied in detail with considering the finite size effect. It turns out that the phonon thermal conductivity decreases with the increase of temperature, and displays anisotropies along different crystallographic orientations. The phonon thermal conductivity in [0001] direction (close-packed plane) is largest, while the values in other two directions of [2110] and [0110] are relatively close. In the region near GB, there is a sharp temperature drop, and the phonon thermal conductivity is about one-tenth of that of the single crystal at 550 K, suggesting that the GB may act as a thermal barrier in the crystal.
Keywords:  alpha-zirconium      lattice thermal conductivity      molecular dynamics simulation  
Received:  11 August 2012      Revised:  15 January 2013      Accepted manuscript online: 
PACS:  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  65.40.-b (Thermal properties of crystalline solids)  
  44.10.+i (Heat conduction)  
  02.30.Em (Potential theory)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB731601).
Corresponding Authors:  Lai Wen-Sheng     E-mail:  wslai@tsinghua.edu.cn

Cite this article: 

Wu Tian-Yu (武天宇), Lai Wen-Sheng (赖文生), Fu Bao-Qin (付宝勤) Study of lattice thermal conductivity of alpha-zirconium by molecular dynamics simulation 2013 Chin. Phys. B 22 076601

[1] Wooding S J, Howe L M, Gao F, Calder A F and Bacon D J 1998 J. Nucl. Mater. 254 191
[2] Gao F, Bacon D J, Howe L M and So C B 2001 J. Nucl. Mater. 294 288
[3] Wooding S J and Bacon D J 1997 Philosophical Magazine A 76 1033
[4] Yamanaka S, Yamada K, Kurosaki K, Uno M, Takeda K, Anada H, Matsuda T and Kobayashi S 2002 J. Nucl. Mater. 294 94
[5] Tsuchiya B, Huang J, Konashi K, Teshigawara M and Yamawaki M 2001 J. Nucl. Mater. 289 329
[6] Raabe D, Xiang J Z and Wu X H 2002 Computational Materials Science (Beijing: Chemical Industry Press) p. 60 (in Chinese)
[7] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[8] Xia R H, Tian X G and Shen Y P 2010 Acta Mech. Sin. 26 599
[9] Maiti A, Mahan G D and Pantelides S T 1997 Solid State Commun. 102 517
[10] Heino P and Ristolainen E 2003 Microelectron. J. 34 773
[11] Wang Z H and Li Z X 2006 Appl. Therm. Eng. 26 2063
[12] Wagner G J, Jones R E, Templeton J A and Parks M L 2008 Comput. Methods Appl. Mech. Eng. 197 3351
[13] Kaburaki H, Li J and Yip S 1999 Mater. Res. Soc. 538 503
[14] Maeda A 1995 Phys. Rev. E 52 234
[15] Mingo N, Yang L, Li D and Majumdar A 2003 Nano Lett. 3 1713
[16] Abramson A R, Tien C L and Majumdar A 2002 J. Heat Transfer 124 963
[17] Gu X K and Cao B Y 2007 Chin. Phys. 16 3777
[18] Zhang M P, Zhong W R and Ai B Q 2011 Chin. Phys. B 20 100508
[19] Fu B Q, LaiWS, Yuan Y, Xu H Y and LiuW2012 J. Nucl. Mater. 427 268
[20] Volz S G and Chen G 1999 Physica B 263 709
[21] Volz S G and Chen G 1999 Appl. Phys. Lett. 75 2056
[22] Ikeshoji T and Hafskjold B 1994 Mol. Phys. 81 251
[23] MullerPlathe F 1997 J. Chem. Phys. 106 6082
[24] Mendelev M I and Ackland G J 2007 Phil. Mag. Lett. 87 349
[25] Nose S 1984 J. Chem. Phys. 81 511
[26] Parrinello M and Rahman J 1981 Appl. Phys. 52 7182
[27] Nose S and Klein M L 1983 Mol. Phys. 50 1055
[28] Gear C W 1966 ANL Report, No. ANL-7126
[29] Goldak J, Lloyd L T and Barrett C S 1966 Phys. Rev. 144 478
[30] Oligschleger C and Schön J C 1999 Phys. Rev. B 59 4125
[31] Shen Y F 2005 Basic Course of Solid State Physics (Beijing: Chemical Industry Press) p. 260 (in Chinese)
[32] Castejon H J 2003 J. Phys. Chem. B 107 826
[33] Fink J K and Leibowitz L 1995 J. Nucl. Mater. 226 44
[34] Chen H, You S W, Hu Y F and Lü Y H 1993 Rare Metal Mater. Eng. 22 67 (in Chinese)
[35] Crocombette J P and Gelebart L 2009 J. Appl. Phys. 106 083520
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[7] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[8] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[9] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[10] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[11] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[14] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[15] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
No Suggested Reading articles found!