Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074201    DOI: 10.1088/1674-1056/22/7/074201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Defect solitons supported by parity-time symmetric defect in superlattices

Hu Su-Meia, Hu Weib
a Department of Physics, Guangdong University of Petrochemical Technology, Maoming 525000, China;
b Laboratory of Photonic Information Technology, South China Normal University, Guangzhou 510631, China
Abstract  The existence and stability of defect solitons supported by parity-time (PT) symmetric defects in superlattices are investigated. In the semi-infinite gap, in-phase solitons are found to exist stably for positive defects, zero defects, and negative defects. In the first gap, out-of-phase solitons are stable for positive defects or zero defects, whereas in-phase solitons are stable for negative defects. For both the in-phase and out-of-phase solitons with the positive defect and in-phase solitons with negative defect in the first gap, there exists a cutoff point of the propagation constant below which the defect solitons vanish. The value of the cutoff point depends on the depth of defect and the imaginary parts of the PT symmetric defect potentials. The influence of the imaginary part of the PT symmetric defect potentials on soliton stability is revealed.
Keywords:  defect solitons      parity-time symmetric defect      superlattices  
Received:  02 November 2012      Revised:  17 December 2012      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804033, 11174090, and 11174091).
Corresponding Authors:  Hu Wei     E-mail:  huwei@scnu.edu.cn

Cite this article: 

Hu Su-Mei, Hu Wei Defect solitons supported by parity-time symmetric defect in superlattices 2013 Chin. Phys. B 22 074201

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[3] Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
[4] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
[5] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[6] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[7] Hu S M, Ma X K, Lu D Q, Yang Z J, Zheng Y Z and Hu W 2011 Phys. Rev. A 84 043818
[8] Hu S M, Ma X K, Lu D Q, Zheng Y Z and Hu W 2012 Phys. Rev. A 85 043826
[9] Hu S M, Lu D Q, Ma X K, Guo Q and Hu W 2012 Europhys. Lett. 98 14006
[10] Miroshnichenko A E, Malomed B A and Kivshar Y S 2011 Phys. Rev. A 84 012123
[11] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[12] Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nature Phys. 6 192
[13] Regensburger A, Bersch C, Mirl M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
[14] Ramezani H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A 82 043803
[15] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[16] Abdullaev F Kh, Kartashov Y V, Konotop V V and Zezyulin D 2011 Phys. Rev. A 83 043805
[17] Zezyulin D A, Kartashov Y V and Konotop V V 2011 Europhys. Lett. 96 64003
[18] Zhou K Y, Guo Z Y, Wang J C and Liu S T 2011 Opt. Lett. 35 2928
[19] Wang H and Wang J 2011 Opt. Express 19 4030
[20] Schindler J, Li A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101
[21] Ramezani H, Schindler J, Ellis F M, Gunther U and Kottos T 2012 Phys. Rev. A 85 062122
[22] Lin Z, Schindler J, Ellis F M and Kottos T 2012 Phys. Rev. A 85 050101
[23] Chen W H, He Y J and Wang H Z 2007 Opt. Express 22 14498
[24] Zhang Z Y and Xiong S J 1997 Phys. Rev. B 55 10302
[25] Alekseev K N, Berman G P, Campbell D K, Cannon E H and Cargo M C 1996 Phys. Rev. B 54 10625
[26] Porter M A, Kevrekidis P G, Carretero-Gonzalez R and Frantzeskakis D J 2006 Phys. Lett. A 352 210
[27] Ghulinyan M, Oton C J, Gaburro Z, Pavesi L, Toninelli C and Wiersma D S 2005 Phys. Rev. Lett. 94 127401
[28] Dreisow F, Szameit A, Heinrich M, Pertsch T, Nolte S, Tünnermann A and Longhi S 2009 Phys. Rev. Lett. 102 076802
[29] Dong L W, Yang X Y and Chen H Y 2009 Chin. Phys. B 18 988
[30] Chen W and Mills D L 1987 Phys. Rev. Lett. 58 160
[31] Hu S M and Hu W 2012 Chin. Phys. B 21 024212
[1] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
[2] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[3] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[4] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[5] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[6] Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array
Hong-Yue Hao(郝宏玥), Wei Xiang(向伟), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Xi Han(韩玺), Yao-Yao Sun(孙瑶耀), Dong-Wei Jiang(蒋洞微), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Si-Hang Wei(魏思航), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(4): 047303.
[7] High-efficiency InGaN/AlInGaN multiple quantum wells with lattice-matched AlInGaN superlattices barrier
Feng Xu(徐峰), Peng Chen(陈鹏), Fu-Long Jiang(蒋府龙), Ya-Yun Liu(刘亚云), Zi-Li Xie(谢自立), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Yi Shi(施毅), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2017, 26(1): 017803.
[8] Effect of disorders on topological phases inone-dimensional optical superlattices
Zhizhou Wang(王志宙), Yidong Wu(吴一东), Huijing Du(杜会静), Xili Jing(井西利). Chin. Phys. B, 2016, 25(7): 077303.
[9] Observation of trapped light induced by Dwarf Dirac-cone in out-of-plane condition for photonic crystals
Subir Majumder, Tushar Biswas, Shaymal K Bhadra. Chin. Phys. B, 2016, 25(10): 107102.
[10] Modified method of surface plasmons in metal superlattices
Zhang Yu-Liang, Wang Xuan-Zhang. Chin. Phys. B, 2015, 24(5): 057301.
[11] Performance improvement of blue light-emitting diodes with an AlInN/GaN superlattice electron-blocking layer
Zhao Fang, Yao Guang-Rui, Song Jing-Jing, Ding Bin-Bin, Xiong Jian-Yong, Su Chen, Zheng Shu-Wen, Zhang Tao, Fan Guang-Han. Chin. Phys. B, 2013, 22(5): 058503.
[12] Exchange couplings in magnetic films
Liu Wei, Liu Xiong-Hua, Cui Wei-Bin, Gong Wen-Jie, Zhang Zhi-Dong. Chin. Phys. B, 2013, 22(2): 027104.
[13] Dependence of electron dynamics on magnetic fields in semiconductor superlattices
Yang Gui, Wang Lei, Tian Jun-Long. Chin. Phys. B, 2013, 22(12): 127305.
[14] The influence of AlGaN/GaN superlattices as electron blocking layers on the performance of blue InGaN light-emitting diodes
Gong Chang-Chun, Fan Guang-Han, Zhang Yun-Yan, Xu Yi-Qin, Liu Xiao-Ping, Zheng Shu-Wen, Yao Guang-Rui, Zhou De-Tao. Chin. Phys. B, 2012, 21(6): 068505.
[15] Spin-polarized transport in graphene nanoribbon superlattices
Yu Xin-Xin, Xie Yue-E, Yang Tao, Chen Yuan-Ping. Chin. Phys. B, 2012, 21(10): 107202.
No Suggested Reading articles found!