Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 073302    DOI: 10.1088/1674-1056/22/7/073302
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Global analysis of the Comet-tail system of 12C16O+

Shao Xu-Pinga, Zhao Mina, Yang Xiao-Huaa b
a School of Science, Nantong University, Nantong 226007, China;
b State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  A global analysis of the ro-vibrational spectra of 19 bands in the comet-tail (A2Πi-X2Σ+) system of the 12C16O+ cation is presented, and the precise molecular constants of the vibrational levels involved are obtained via a weighted nonlinear least-squares fitting procedure. Furthermore, the resultant precise equilibrium molecular constants enable us to achieve accurate Rydberg-Klein-Rees (RKR) potential curves for both the A and X states, yielding the accurate Franck-Condon factor and band origin of each band in this system.
Keywords:  CO+      molecular constants      comet-tail (A2Πi-X2Σ+) system     
Received:  14 November 2012      Published:  01 June 2013
PACS:  33.20.-t (Molecular spectra)  
  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11034002), the State Key Program for Basic Research of China (Grant No. 2011921602), the Natural Science Program of Nantong University, China, the State Key Laboratory of Precision Spectroscopy, China, and Qing Lan Project, China.
Corresponding Authors:  Yang Xiao-Hua     E-mail:  xhyang@ntu.edu.cn;xhyang@phy.ecnu.edu.cn

Cite this article: 

Shao Xu-Ping, Zhao Min, Yang Xiao-Hua Global analysis of the Comet-tail system of 12C16O+ 2013 Chin. Phys. B 22 073302

[1] Pluvinel A B and Baldet F 1909 Comput. Rend. 148 759
[2] Rao K N 1950 Astrophys. J. 111 306
[3] Krupenie P H 1966 The Band Spectrum of Carbon Monoxide (Washington: U. Govt. Print. Office)
[4] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. IV (Princeton: D. Van Nostrand Company)
[5] Coxon J A and Foster S C 1982 J. Mol. Spectrosc. 93 117
[6] Brown R D, Dittman R G and McGilvery D C 1984 J. Mol. Spectrosc. 104 337
[7] Haridass C, Prasad C V V and Paddi Reddy S 1992 Astrophys. J. 388 669
[8] Haridass C, Prasad C V V and Paddi Reddy S 2000 J. Mol. Spectrosc. 199 180
[9] Coxon J A, Kępa R and Piotrowska I 2010 J. Mol. Spectrosc. 262 107
[10] Gudeman C S and Saykally R J 1984 Annu. Rev. Phys. Chem. 35 387
[11] Wang R J, Chen Y Q, Cai P P, Lu J J, Bi Z Y, Yang X H and Ma L S 1999 Chem. Phys. Lett. 307 339
[12] Yang X H, Chen Y Q, Cai P P, Wang R J and Lu J J 2000 Chin. J. Chem. Phys. 13 406
[13] Yang X H, Wu Y D and Chen Y Q 2007 J. Mol. Spectrosc. 245 84
[14] Zhuang H, Yang X H, Wu S H, Bi Z Y, Ma L S, Liu Y Y and Chen Y Q 2001 Mol. Phys. 99 1447
[15] Wu Y D, Yang X H, Guo Y C and Chen Y Q 2008 J. Mol. Spectrosc. 248 81
[16] Shao X P, Gong T L, Wu L and Yang X H 2011 J. Quant. Spectrosc. Ra. 112 1005
[17] Li W, Yang X H, Gan Y J, Wu L, Guo Y C, Liu Y Y and Chen Y Q 2005 Spectrosc. Spect. Anal. 25 1250
[18] Zhang X N, Shi D H, Sun J F and Zhu Z L 2011 Chin. Phys. B 20 043105
[19] Wang J M, Sun J F and Shi D H 2010 Chin. Phys. B 19 113601
[20] Shi D H, Niu X H, Sun J F and Zhu Z L 2012 Acta Phys. Sin. 61 093105 (in Chinese)
[21] Wang J M, Sun J F, Shi D H, Zhu Z L and Li W T 2012 Acta Phys. Sin. 61 063104 (in Chinese)
[22] Kepa R, Kocan A, Ostrowska-Kopeć M, Piotrowska-Domagala I and Zachwieja M 2004 J. Mol. Spectrosc. 228 66
[23] Brown J M, Hougen J T, Huber K P, Johns J W C, Kopp I, Lefebvre-Brion H, Merer A J, Ramsay D A, Rostas J and Zare R N 1975 J. Mol. Spectrosc. 55 500
[24] Brown J M, Colbourn E A, Watson J K G and Wayne F D 1979 J. Mol. Spectrosc. 74 294
[25] Amiot C, Maillard J P and Chauville J 1981 J. Mol. Spectrosc. 87 196
[26] Le Roy R J 1992 RKR1: A Computer Program Implementing the First-Order RKR Method for Determining Diatom Potential Energy Curves from Spectroscopic Constants, University of Waterloo Chemical Physics Research Report No. CP-425
[27] Le Roy R J 2000 Level 7.1: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report No. CP-642R
[1] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
[2] Study on the A2Π3/2u, B2Δ3/2u, and X2Π3/2g states of Cl2+ including its isotopologues
Wu Ling, You Su-Ping, Shao Xu-Ping, Chen Gang-Jin, Ding Ning, Wang You-Mei, Yang Xiao-Hua. Chin. Phys. B, 2015, 24(8): 083301.
[3] Accurate ab initio study of low-lying electronic states of phosphorus nitride radical
Wang Jie-Min, Sun Jin-Feng, Shi De-Heng. Chin. Phys. B, 2010, 19(11): 113404.
[4] Isotopic effect of Cl2+ rovibronic spectra in the A-X system
Wu Ling, Yang Xiao-Hua, Chen Yang-Qin. Chin. Phys. B, 2009, 18(7): 2724-2728.
[5] GLOBAL ANALYSIS OF SPECTRA OF THE PO2 RADICAL IN THE GAS PHASE
Huang Guang-ming, Liu Yu-yan, Liu Xiao-yong, Liu Hong-ping, Guo Yuan-qing, Lin Jie-li, Gao Hui, Duan Chuan-xi. Chin. Phys. B, 2000, 9(9): 652-655.
No Suggested Reading articles found!