Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040511    DOI: 10.1088/1674-1056/22/4/040511
GENERAL Prev   Next  

Stress distribution and surface instability of an inclined granular layer

Zheng He-Penga b, Jiang Yi-Mina, Peng Zhenga
a School of Physics and Electronics, Central South University, Changsha 410083, China;
b School of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
Abstract  Static granular materials may avalanche suddenly under continuous quasi-static drives. The phenomenon, which is important for many engineering applications, can be explained by analyzing stability of elastic solutions. We show this for a granular layer driven by its inclination angle in gravity, of which elastic problem could be solved generally and analytically. It is found that a lost of stability may occur only at free surface of the layer. The result is considered to be relevant for understanding surface avalanches and flows observed by experiments.
Keywords:  granular matter      nonlinear elasticity      stress      surface instability  
Received:  18 June 2012      Revised:  30 August 2012      Published:  01 March 2013
PACS:  05.70.Ce (Thermodynamic functions and equations of state)  
  45.70.Cc (Static sandpiles; granular compaction)  
  46.25.-y (Static elasticity)  
  62.20.D  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904175).
Corresponding Authors:  Jiang Yi-Min     E-mail:  jiangyimin@yahoo.cn

Cite this article: 

Zheng He-Peng, Jiang Yi-Min, Peng Zheng Stress distribution and surface instability of an inclined granular layer 2013 Chin. Phys. B 22 040511

[1] Lu K Q and Liu Q X 2004 Physics 33 629 (in Chinese)
[2] Sajjad H S, Li Y C, Cui F F, Zhang Q and Hou M Y 2012 Chin. Phys. B 21 014501
[3] Abdul Q, Shi Q F, Liang X W and Sun G 2010 Chin. Phys. B 19 034601
[4] Cai Q D, Chen S Y and Sheng X W 2011 Chin. Phys. B 20 024502
[5] Jia Y, Yang X Q, Deng M, Guo H P and Ye J L 2010 Chin. Phys. B 19 128202
[6] Gudehus G 2011 Physical Soil Mechanics (Berlin: Springer-Verlag)
[7] Jiang Y M and Liu M 2003 Phys. Rev. Lett. 91 144301
[8] Jiang Y M and Liu M 2009 Granular Matter. 11 139
[9] Jiang Y M, Zheng H P, Peng Z, Fu L P, Song S X, Sun Q C, Mayer M and Liu M 2012 Phys. Rev. E 85 051304
[10] Landau L D and Lifshitz E M 1987 Fluid Mechanics (Oxford: Pergamon Press)
[11] Landau L D and Lifshitz E M 1986 Theory of Elasticity (Oxford: Pergamon Press)
[12] Sun Q C, Hou M Y and Jin F 2011 Physics and Mechanics of Granular Matter (Beijing: Science Press)
[13] Qian Z W 2012 Acta Phys. Sin. 61 134301 (in Chinese)
[14] Daerr A and Douady S 1999 Nature 399 241
[15] Börzsönyi T, Ecke R E and McElwaine J N 2009 Phys. Rev. Lett. 103 178302
[16] Börzsönyi T, Halsey T C and Ecke R E 2005 Phys. Rev. Lett. 94 208001
[17] Zémerli C, Latz A and Andrä H 2012 "Constitutive Models for Static Granular Systems and Focus to the Jiang-Liu Hyperelastic Law", Berichte des Fraunhofer ITWM , Nr. 215. Kaiserslautern, Germany ISSN 1434-9973
[18] Andreotti B and Bonneau L 2009 Phys. Rev. Lett. 103 238001
[19] Bonneau L, Catelin-Jullien T and Andreotti B 2010 Phys. Rev. E 82 011309
[20] Bonneau L, Andreotti B and Clément E 2008 Phys. Rev. Lett. 101 118001
[21] Bonneau L, Andreotti B and Clément E 2007 Phys. Rev. E 75 016602
[1] Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates
Ze-Yuan Yang(杨泽园), Jun Wang(王俊), Guo-Feng Wu(武国峰), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(1): 016102.
[2] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平)\cclink. Chin. Phys. B, 2021, 30(1): 018104.
[3] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹)‡. Chin. Phys. B, 2021, 30(1): 016201.
[4] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[5] Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries
Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐). Chin. Phys. B, 2020, 29(6): 068202.
[6] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[7] Comparison study of GaN films grown on porous andplanar GaN templates
Shan Ding(丁姗), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Peng Chen(陈鹏), Bin Liu(刘斌), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2020, 29(3): 038103.
[8] Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰). Chin. Phys. B, 2020, 29(12): 127101.
[9] Evaluation of stress voltage on off-state time-dependent breakdown for GaN MIS-HEMT with SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Qiu-Ling Qiu(丘秋凌), Liu-An Li(李柳暗), Liang He(何亮), Jin-Wei Zhang(张津玮), Chen-Liang Feng(冯辰亮), Zhen-Xing Liu(刘振兴), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Yun-Liang Rao(饶运良), Zhi-Yuan He(贺致远), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(10): 107201.
[10] Mechanism from particle compaction to fluidization of liquid-solid two-phase flow
Yue Zhang(张悦), Jinchun Song(宋锦春), Lianxi Ma(马连喜), Liancun Zheng(郑连存), Minghe Liu(刘明贺). Chin. Phys. B, 2020, 29(1): 014702.
[11] Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors
Chao-Yang Han(韩朝阳), Yuan Liu(刘远), Yu-Rong Liu(刘玉荣), Ya-Yi Chen(陈雅怡), Li Wang(王黎), Rong-Sheng Chen(陈荣盛). Chin. Phys. B, 2019, 28(8): 088502.
[12] Investigation on the drives of the poloidal flow in the ohmic and biased electrode experiments
Yi Yu(余羿), Tao Lan(兰涛), Min Xu(许敏), Yizhi Wen(闻一之). Chin. Phys. B, 2019, 28(3): 035202.
[13] Numerical study of optical trapping properties of nanoparticle on metallic film with periodic structure
Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾). Chin. Phys. B, 2019, 28(2): 024203.
[14] Laser-induced damage threshold in HfO2/SiO2 multilayer films irradiated by β-ray
Mei-Hua Fang(方美华), Peng-Yu Tian(田鹏宇), Mao-Dong Zhu(朱茂东), Hong-Ji Qi(齐红基), Tao Fei(费涛), Jin-Peng Lv(吕金鹏), Hui-Ping Liu(刘会平). Chin. Phys. B, 2019, 28(2): 024215.
[15] Design and development of radio frequency output window for circular electron-positron collider klystron
Zhijun Lu(陆志军), Shigeki Fukuda, Zusheng Zhou(周祖圣), Shilun Pei(裴士伦), Shengchang Wang(王盛昌), Ouzheng Xiao(肖欧正), UnNisa Zaib, Bowen Bai(白博文), Guoxi Pei(裴国玺), Dong Dong(董东), Ningchuang Zhou(周宁闯), Shaozhe Wang(王少哲), Yunlong Chi(池云龙). Chin. Phys. B, 2018, 27(11): 118402.
No Suggested Reading articles found!