Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040306    DOI: 10.1088/1674-1056/22/4/040306
GENERAL Prev   Next  

Controlled remote implementation of quantum operations with high-dimensional systems

Zhan You-Banga, Li Xiao-Weia, Ma Peng-Chenga, Shi Jinb
a School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China;
b National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  We present two protocols for controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirectional quantum state teleportaion (BQST) with high-dimensional systems is considered. Then, instead of using the BQST method, a protocol for controlled remote implementation of partially unknown operations belonging to some restricted sets in high-dimensional systems is proposed. It is shown that, in these protocols, if and only if the controller would like to help the sender with the remote operations, the controlled remote implementation of quantum operations for high-dimensional systems can be completed.
Keywords:  controlled remote implementation      quantum operation      teleportation      high-dimensional entangled state     
Received:  30 July 2012      Published:  01 March 2013
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074088).
Corresponding Authors:  Zhan You-Bang     E-mail:

Cite this article: 

Zhan You-Bang, Li Xiao-Wei, Ma Peng-Cheng, Shi Jin Controlled remote implementation of quantum operations with high-dimensional systems 2013 Chin. Phys. B 22 040306

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Cirac J I and Parkins A S 1994 Phys. Rev. A 50 R4441
[3] Moussa M H Y 1997 Phys. Rev. A 55 R3287
[4] Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301
[5] Lee J and Kim M S 2000 Phys. Rev. Lett. 84 4236
[6] Bowen G and Bose S 2001 Phys. Rev. Lett. 87 267901
[7] Rigolin G 2005 Phys. Rev. A 71 032303
[8] Yao Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[9] Gordon G and Rigolin G 2006 Phys. Rev. A 73 042309
[10] Muralidharan S and Panigrahi P K 2008 Phys. Rev. A 77 032321
[11] Sun Y, Man Z X and Xia Y J 2009 Chin. Phys. B 18 1742
[12] Mei F, Yu Y F and Zhang Z M 2010 Chin. Phys. B 19 020308
[13] Wang Z J, Zhang K and Fan C Y 2010 Chin. Phys. B 19 110311
[14] Zhan Y B, Zhang Q Y, Wang Y W and Ma P C 2010 Chin. Phys. Lett. 27 010307
[15] Wang M Y and Yan F L 2011 Chin. Phys. Lett. 28 060301
[16] Tang J W, Zhao G X and He X H 2011 Chin. Phys. B 20 050312
[17] Wang M Y and Yan F L 2011 Chin. Phys. B 20 120309
[18] Guo Y and Luo X B 2012 Chin. Phys. Lett. 29 060303
[19] Bouwmeester D, Pan J W, Kmattle, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[20] Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[21] Huelga S F, Vaccaro J A, Chefles A and Plenio M B 2001 Phys. Rev. A 63 042303
[22] Huelga S F, Plenio M B and Vaccaro J A 2002 Phys. Rev. A 65 042316
[23] Zou X B, Pahlke K and Mathis W 2002 Phys. Rev. A 65 064305
[24] Dür W, Vidal G and Cirac J I 2002 Phys. Rev. Lett. 89 057901
[25] Reznik B, Aharonov Y and Groisman B 2002 Phys. Rev. A 65 032312
[26] Zheng Y Z, Gu Y J and Guo G C 2002 Chin. Phys. Lett. 19 623
[27] Zheng Y Z, Ye P and Guo G C 2004 Chin. Phys. Lett. 21 9
[28] Zhang Y S, Ye M Y and Guo G C 2005 Phys. Rev. A 71 062331
[29] Wang A M 2006 Phys. Rev. A 74 032317
[30] Yao C M 2006 Chin. Phys. Lett. 23 545
[31] Wang A M 2007 Phys. Rev. A 75 062323
[32] Zhao N B and Wang A M 2007 Phys. Rev. A 76 062317
[33] Zhao N B and Wang A M 2008 Phys. Rev. A 78 014305
[34] Fan Q B and Liu D D 2008 Sci. China G: Phys. Mech. Astron. 51 1661
[35] Chen L B, Jin R B and Lu H 2009 Chin. Phys. B 18 30
[36] Zhang Z J and Cheung C Y 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165508
[37] Huang Y F, Ren X F, Zhang Y S, Duan L M and Guo G C 2004 Phys. Rev. Lett. 93 240501
[38] Xiang G Y, Li J and Guo G C 2005 Phys. Rev. A 71 044304
[39] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 412 313
[40] Son W, Lee J, Kim M S and Park Y J 2001 Phys. Rev. A 64 064304
[41] Bruβ D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[42] Cabello A 2002 Phys. Rev. Lett. 89 100402
[43] Liu X S, Long G L, Tong D M and Li F 2002 Phys. Rev. A 65 022304
[44] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 052331
[45] Zeng B and Zhang P 2002 Phys. Rev. A 65 022316
[46] Thew R T, Nemoto K, White A G and Munro W J 2002 Phys. Rev. A 66 012303
[47] Klimov A B, Guzmán R, Retamal J C and Saavedra C 2003 Phys. Rev. A 67 062313
[48] Cheong Y W, Lee S W, Lee J and Lee H W 2007 Phys. Rev. A 76 042314
[49] Alber G, Delgado A, Gisin N and Jex I 2001 J. Phys. A: Math. Gen. 34 8821
[1] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[2] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[3] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[4] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[5] Multi-hop teleportation based on W state and EPR pairs
Hai-Tao Zhan(占海涛), Xu-Tao Yu(余旭涛), Pei-Ying Xiong(熊佩颖), Zai-Chen Zhang(张在琛). Chin. Phys. B, 2016, 25(5): 050305.
[6] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[7] Detection of the ideal resource for multiqubit teleportation
Zhao Ming-Jing, Chen Bin, Fei Shao-Ming. Chin. Phys. B, 2015, 24(7): 070302.
[8] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[9] Quantum information transmission in the quantum wireless multihop network based on Werner state
Shi Li-Hui, Yu Xu-Tao, Cai Xiao-Fei, Gong Yan-Xiao, Zhang Zai-Chen. Chin. Phys. B, 2015, 24(5): 050308.
[10] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na, Quan Dong-Xiao, Pei Chang-Xing, Yang-Hong. Chin. Phys. B, 2015, 24(2): 020304.
[11] Statistical properties of coherent photon-subtracted two-mode squeezed vacuum and its application in quantum teleportation
Zhang Guo-Ping, Zheng Kai-Min, Liu Shi-You, Hu Li-Yun. Chin. Phys. B, 2014, 23(5): 050301.
[12] Teleportation of three-dimensional single particle state in noninertial frames
Wu Qi-Cheng, Wen Jing-Ji, Ji Xin, Yeon Kyu-Hwang. Chin. Phys. B, 2014, 23(2): 020303.
[13] Distributed wireless quantum communication networks with partially entangled pairs
Yu Xu-Tao, Zhang Zai-Chen, Xu Jin. Chin. Phys. B, 2014, 23(1): 010303.
[14] Distributed wireless quantum communication networks
Yu Xu-Tao, Xu Jin, Zhang Zai-Chen. Chin. Phys. B, 2013, 22(9): 090311.
[15] Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels
Peng Jia-Yin, Mo Zhi-Wen. Chin. Phys. B, 2013, 22(5): 050310.
No Suggested Reading articles found!