Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 124102    DOI: 10.1088/1674-1056/22/12/124102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration

Wang Feng-Chao
School of Science, Shanghai Institute of Technology, Shanghai 201418, China
Abstract  The shock wave acceleration of ions driven by laser-heated thermal pressure is studied through one-dimensional particle-in-cell simulation and analysis. The generation of high-energy mono-energetic protons in recent experiments (D. Haberberger et al., 2012 Nat. Phys. 8 95) is attributed to the use of exponentially decaying density profile of the plasma target. It does not only keep the shock velocity stable but also suppresses the normal target normal sheath acceleration. The effects of target composition are also examined, where a similar collective velocity of all ion species is demonstrated. The results also give some reference to future experiments of producing energetic heavy ions.
Keywords:  laser–      ion acceleration      shock wave      particle-in-cell simulation  
Received:  19 April 2013      Revised:  17 June 2013      Published:  25 October 2013
PACS:  41.75.Jv (Laser-driven acceleration?)  
  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the Shanghai Natural Special Foundation for Outstanding Young Teachers in University, China (Grant No. yyy10043).
Corresponding Authors:  Wang Feng-Chao     E-mail:  fcwang@sit.edu.cn

Cite this article: 

Wang Feng-Chao Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration 2013 Chin. Phys. B 22 124102

[1] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D and Powell H 2001 Phys. Rev. Lett. 86 436
[2] Malekynia B and Razavipour S S 2013 Chin. Phys. B 22 055202
[3] Malekynia B and Razavipour S S 2012 Chin. Phys. B 21 125201
[4] Pukhov A 2001 Phys. Rev. Lett. 86 3562
[5] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A and Snavely R A 2001 Phys. Plasmas 8 542
[6] Snavely R A, Key M H, Hatchett S P, Gautier D C, Flippo K A, Letzring S, Johnson R P, Shimada T, Yin L, Albright B J, Bowers K J, Fernández J C, Rykovanov S G, Wu H C, Zepf M, Jung D, Liechtenstein V Kh, Schreiber J, Habs D and Hegelich B M 2000 Phys. Rev. Lett. 85 2945
[7] Mora P 2003 Phys. Rev. Lett. 90 185002
[8] Esirkepov T Zh, Bulanov S V, Nishihara K, Tajima T, Pegoraro F, Khoroshkov V S, Mima K, Daido H, Kato Y, Kitagawa Y, Nagai K and Sakabe S 2002 Phys. Rev. Lett. 89 175003
[9] Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D and Esirkepov T 2006 Nature 439 445
[10] Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K and Fernández J C 2006 Nature 439 441
[11] Gaillard S A, Kluge T, Flippo K A, Bussmann M, Gall B, Lockard T, Geissel M, Offermann D T, Schollmeier M, Sentoku Y and Cowan T E 2011 Phys. Plasmas 18 056710
[12] Macchi A, Cattani F, Liseykina T V and Cornolti F 2005 Phys. Rev. Lett. 94 165003
[13] Ban H Y, Gu Y J, Kong Q, Li Y Y, Zhu Z and Kawata S 2011 Chin. Phys. Lett. 29 035202
[14] Shen B F and Xu Z Z 2001 Phys. Rev. E 64 056406
[15] Esirkepov T, Borghesi M, Bulanov S V, Mourou G and Tajima T 2004 Phys. Rev. Lett. 92 175003
[16] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X and Chen J E 2008 Phys. Rev. Lett. 100 135003
[17] Qiao B, Zepf M, Borghesi M and Geissler M 2009 Phys. Rev. Lett. 102 145002
[18] Pegoraro F and Bulanov S V 2007 Phys. Rev. Lett. 99 065002
[19] Zhang X M, Shen B F, Li X M, Jin Z Y and Wang F C 2007 Phys. Plasmas 14 073101
[20] Robinson A P L, Zepf M, Kar S, Evans R G and Bellei C 2008 New J. Phys. 10 013021
[21] Klimo O, Psikal J, Limpouch J and Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301
[22] Henig A, Kiefer D, Markey K, Gautier D C, Flippo K A, Letzring S, Johnson R P, Shimada T, Yin L, Albright B J, Bowers K J, Fernández J C, Rykovanov S G, Wu H C, Zepf M, Jung D, Liechtenstein V Kh, Schreiber J, Habs D and Hegelich B M 2009 Phys. Rev. Lett. 103 045002
[23] Chen M, Pukhov A and Yu T P 2009 Phys. Rev. Lett. 103 024801
[24] Yu T, Pukhov A, Shvets G and Chen M 2010 Phys. Rev. Lett. 105 065002
[25] Shen B F, Zhang X M, Sheng Z M, Yu M Y and Cary J 2009 Phys. Rev. ST Accel. Beams 12 121301
[26] Yu L L, Xu H, Wang W M, Sheng Z M, Shen B F, Yu W and Zhang J 2010 New J. Phys. 12 045021
[27] Zhang X M, Shen B F, Ji L L, Wang F C, Wen M, Wang W P, Xu J C and Yu Y H 2010 Phys. Plasmas 17 123102
[28] Zheng F L, Wang H Y, Yan X Q, Tajima T, Yu M Y and He X T 2012 Phys. Plasmas 19 023111
[29] Denavit J 1992 Phys. Rev. Lett. 69 3052
[30] Palmer C A J, Dover N P, Pogorelsky I, Babzien M, Dudnikova G I, Ispiriyan M, Polyanskiy M N, Schreiber J, Shkolnikov P, Yakimenko V and Najmudin Z 2011 Phys. Rev. Lett. 106 014801
[31] Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B and Joshi C 2012 Nat. Phys. 8 95
[32] Fiuza F, Stockem A, Boella E, Fonseca R A, Silva L O, Haberberger D, Tochitsky S, Gong C, Mori W B and Joshi C 2012 Phys. Rev. Lett. 109 215001
[33] Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S and Mori W B 2004 Phys. Rev. Lett. 92 015002
[34] Forslund D W and Shonk C R 1970 Phys. Rev. Lett. 25 1699
[35] Forslund D W and Freidberg J P 1971 Phys. Rev. Lett. 27 1189
[36] Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Löwenbrück K, Mackinnon A J, Patel P, Pretzler G, Toncian T and Willi O 2008 Phys. Rev. Lett. 101 025004
[37] Nieter C and Cary J R 2004 J. Comp. Phys. 196 448
[38] Ji L L, Shen B F, Zhang X M, Wang F C, Jin Z Y, Li X M, Wen M and Cary J R 2008 Phys. Rev. Lett. 101 164802
[1] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[2] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[3] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[4] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[5] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[6] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
[7] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[8] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[9] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[10] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[11] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[12] Laser-driven flier impact experiments at the SG-III prototype laser facility
Shui Min, Chu Gen-Bai, Xin Jian-Ting, Wu Yu-Chi, Zhu Bin, He Wei-Hua, Xi Tao, Gu Yu-Qiu. Chin. Phys. B, 2015, 24(9): 094701.
[13] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue, Wang Xiang-Da, Liu Xiao-Zhou, Gong Xiu-Fen. Chin. Phys. B, 2015, 24(1): 014301.
[14] Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation
Liu Tian-Hang, Hao Zuo-Qiang, Gao Xun, Liu Ze-Hao, Lin Jing-Quan. Chin. Phys. B, 2014, 23(8): 085203.
[15] Effect of inner-surface roughness of conical target on laser absorption and fast electron generation
Wang Huan, Cao Li-Hua, Zhao Zong-Qing, Yu Ming-Yang, Gu Yu-Qiu, He Xian-Tu. Chin. Phys. B, 2014, 23(5): 055202.
No Suggested Reading articles found!