|
|
Projective synchronization of hyperchaotic system via periodically intermittent control |
Huang Jun-Jiana b, Li Chuan-Donga, Zhang Weib, Wei Peng-Chenga b |
a College of Computer, Chongqing University, Chongqing 400030, China; b Department of Computer Science, Chongqing Education College, Chongqing 400067, China |
|
|
Abstract We further study the projective synchronization of a new hyperchaotic system. Different from the most existing methods, intermittent control is applied to chaotic synchronization in the present paper. We formulate the intermittent control system that governs the dynamics of the projective synchronization error, then derive the sufficient conditions for the exponential stability of intermittent control system by using Lyapunov stability theory, and finally establish the periodically intermittent controller according to the stability criterion by which the projective synchronization is expected to be achieved. The analytical results are also demonstrated by several numerical simulations.
|
Received: 15 February 2012
Revised: 11 March 2012
Published: 01 August 2012
|
PACS:
|
05.45.Jn
|
(High-dimensional chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60974020), the Natural Science Foundation of Chongqing, China (Grant No. cstc2011jjA0980), and the Foundation of Chongqing Education College, China (Grant Nos. KY201112A, KY201113B, and KY201122C ). |
Corresponding Authors:
Huang Jun-Jian
E-mail: hmomu@sina.com
|
Cite this article:
Huang Jun-Jian, Li Chuan-Dong, Zhang Wei, Wei Peng-Cheng Projective synchronization of hyperchaotic system via periodically intermittent control 2012 Chin. Phys. B 21 090508
|
[1] |
Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
|
[2] |
Pecora L M and Carroll T L 1991 Phys. Rev. A 44 2374
|
[3] |
Rulkov N F, Sushchik M M and Tsimring L S 1995 Phys. Rev. E 51 980
|
[4] |
Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
|
[5] |
Abdurahman K, Wang X Y and Zhao Y 2011 Acta Phys. Sin. 60 81 (in Chinese)
|
[6] |
Wang X Y and Zhang Y L 2011 Chin. Phys. B 20 100506
|
[7] |
Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804
|
[8] |
Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193
|
[9] |
Masoller C and Zanette D H 2001 Physica A 300 359
|
[10] |
L F C, Li J Y and Zang X F 2011 Acta Phys. Sin. 60 108 (in Chinese)
|
[11] |
Hu G, Pivka L and Zheleznyak A L 1995 IEEE Trans. Circuits. Syst. 42 736
|
[12] |
Jiang G P, Chen G R and Tang W K 2003 Int. J. Bifurcat. Chaos 13 2343
|
[13] |
Huang D B 2005 Phys. Rev. E 71 037203
|
[14] |
Millerioux G and Daafouz J 2003 IEEE Trans. Circuits. Syst. 50 1270
|
[15] |
Liu Y Z, Lin C S and Wang Z L 2010 Acta Phys. Sin. 59 8407 (in Chinese)
|
[16] |
Yang T and Chua L O 1997 IEEE Trans. Circuits. Syst. 44 976
|
[17] |
Luo Y J, Yu Q and Zhang W D 2011 Acta Phys. Sin. 60 110504 (in Chinese)
|
[18] |
Li Z G,Wen C Y, Soh Y C and Xie W H 2001 IEEE Trans. Circuits. Syst. 48 1351
|
[19] |
Stojanovski T, Kocarev L and Parlitz U 1996 Phys. Rev. E 54 2128
|
[20] |
Chen J, Liu H, Lu J A and Zhang Q J 2010 Commun. Nonlinear Sci. Numer. Simlat. 16 2033
|
[21] |
Huang T W, Li C D, Yu W W and Chen G R 2009 Nonlinearity 22 569
|
[22] |
Li C D, Liao X F and Huang T W 2007 Chaos 170 13103
|
[23] |
Li C D, Feng G, and Liao X F 2007 IEEE. Trans. Circuits. Syst. 54 1019
|
[24] |
Zochowski M 2000 Physica D 145 181
|
[25] |
Huang T W, Li C D and Liu X Z 2008 Chaos 18 033122
|
[26] |
Liu X W and Chen T P 2011 IEEE Trans. Neural. Net. 22 1009
|
[27] |
Yang Q, Zhang K and Chen G 2009 Nonlinear Anal.: Real World Appl. 10 1601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|