Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070203    DOI: 10.1088/1674-1056/21/7/070203
GENERAL Prev   Next  

Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics

Wang Penga b, Xue Yunc, Liu Yu-Lua
a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
b College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China;
c School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Abstract  We investigate the application of the Mei symmetry analysis in finding conserved quantities for the thin elastic rod statics. By using the Mei symmetry analysis, we have obtained the Jacobi integral and the cyclic integrals for a thin elastic rod with the intrinsic twisting for both the cases of circular and non-circular cross sections. Our results can be easily reduced to the results without the intrinsic twisting that have been reported. Through calculation, we find that the Noether symmetry can be more directly and easily used than the Mei symmetry in finding the first integrals for the thin elastic rod. These first integrals will be helpful in the studying of exact solutions and the stability as well as the numerical simulation of the elastic rod model for DNA.
Keywords:  analytical mechanics      Mei symmetry      conservation laws      elastic rod     
Received:  11 January 2012      Published:  01 June 2012
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  02.30.Ik (Integrable systems)  
  87.14.gk (DNA)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10972143), the Research Plan of Higher Education Institutions of Xinjiang Autonomous Region, China (Grand No. XJEDU2010S31), and the Foundation for Key Subject of Theory Physics of Xinjiang Autonomous Region, China.
Corresponding Authors:  Liu Yu-Lu     E-mail:

Cite this article: 

Wang Peng, Xue Yun, Liu Yu-Lu Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics 2012 Chin. Phys. B 21 070203

[1] Benham C J 1977 Proc. Natl. Acad. Sci.USA 74 2397
[2] Liu Y Z 2006 Nonlinear Mechanics of Thin Elastic Rod---Theoretical Basis of Mechanical Model of DNA (Beijing: Tsinghua Press and Springer) pp. 124--131 (in Chinese)
[3] Liu Y Z, Xue Y and Chen L Q 2004 Acta Phys. Sin. 53 2424 (in Chinese)
[4] Liu Y Z and Xue Y 2011 Appl. Math. Mech. Eng. 32 603
[5] Xue Y, Liu Y Z and Chen L Q 2004 Chin. Phys. 13 794
[6] Cao D Q and Tucker R W 2008 Int. J. Solids Structures 45 460
[7] Langer J and Singer D A 1996 SIAM Rev. 38 605
[8] Xue Y, Liu Y Z and Chen L Q 2006 Acta Phys. Sin. 55 3845 (in Chinese)
[9] Xue Y, Liu Y Z and Chen L Q 2005 Acta Mech. Sin. 37 485 (in Chinese)
[10] Xue Y and Wang P 2011 Acta Phys. Sin. 60 114501 (in Chinese)
[11] Bluman G W and Anco S C 2004 Symmetries and Integration Methods for Differential Equations (New York: Springer-verlag)
[12] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[13] Mei F X 2000 Appl. Mech. Rev. 53 283
[14] Coleman B D, Dill E H and Seigond D A 1995 Arch. Rational Mech. Anal. 129 147
[15] Maddocks J H and Dichmann D J 1994 J. Elasticity 34 83
[16] Zhao W J, Weng Y Q and Fu J L 2007 Chin. Phys. Lett. 24 2773
[17] Jung P, Leyendecker S, Linn J and Ortiz M 2010 Int. J. Numer. Meth. Eng. 1 101
[18] Ding N and Fang J H 2011 Chin. Phys. B 20 120201
[19] Wang P, Fang J H and Wang X M 2009 Chin. Phys. B 18 1312
[20] Fang J H, Zhang M J and Zhang W W 2010 Phys. Lett. A 374 1806
[21] Cai J L 2010 Int. J. Theor. Phys. 49 201
[22] Zhang Y 2011 Chin. Phys. B 20 034502
[23] Zheng S W, Xie J F, Chen X W and Du X L 2010 Acta Phys. Sin. 59 5209 (in Chinese)
[24] Zhao L, Fu J L and Chen B Y 2011 Chin. Phys. B 20 040201
[25] Jia L Q, Xie Y L and Luo S K 2011 Acta Phys. Sin. 60 040201 (in Chinese)
[26] Liu X W and Li Y C 2011 Acta Phys. Sin. 60 111102 (in Chinese)
[27] Jiang W A, Li Z J and Luo S K 2011 Chin. Phys. B 20 030202
[28] Lim S 2010 Phys. Fluids 22 024104
[1] Growth induced buckling of morphoelastic rod in viscous medium
Yitong Zhang(张一桐), Shuai Zhang(张帅), Peng Wang(王鹏). Chin. Phys. B, 2020, 29(5): 054501.
[2] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[3] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[4] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[5] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[6] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[7] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun, Geng Xian-Guo, He Guo-Liang. Chin. Phys. B, 2014, 23(6): 060201.
[8] Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation
Wang Xin, Chen Yong, Dong Zhong-Zhou . Chin. Phys. B, 2014, 23(1): 010201.
[9] Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations
Huang Lang-Yang, Jiao Yan-Dong, Liang De-Min. Chin. Phys. B, 2013, 22(7): 070201.
[10] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu, Chen Yong. Chin. Phys. B, 2013, 22(5): 050509.
[11] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling, Chen Li-Qun, Fu Jing-Li, Hong Fang-Yu. Chin. Phys. B, 2013, 22(3): 030201.
[12] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng, Xue Yun, Liu Yu-Lu. Chin. Phys. B, 2013, 22(10): 104503.
[13] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing, Liu Jin-Yuan. Chin. Phys. B, 2012, 21(9): 090202.
[14] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao, Han Yue-Lin, Jia Li-Qun. Chin. Phys. B, 2012, 21(8): 080201.
[15] An extension of the modified Sawada–Kotera equation and conservation laws
He Guo-Liang, Geng Xian-Guo. Chin. Phys. B, 2012, 21(7): 070205.
No Suggested Reading articles found!