Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070202    DOI: 10.1088/1674-1056/21/7/070202
GENERAL Prev   Next  

Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices

Xia Li-Lia b, Chen Li-Quna c
a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, China;
b Department of Physics, Henan Institute of Education, Zhengzhou 450046, China;
c Department of Mechanics, Shanghai University, Shanghai 200444, China
Abstract  The Noether conserved quantities and the Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices are studied. The generalized Hamiltonian equations of the systems are given on the basis of the transformation operators in the space of discrete Hamiltonians. The Lie transformations acting on the lattice, as well as the equations and the determining equations of the Lie symmetries are obtained for the nonholonomic Hamiltonian systems. The discrete analogue of the Noether conserved quantity is constructed by using the Lie point symmetries. An example is discussed to illustrate the results.
Keywords:  discrete nonholonomic Hamiltonian systems      Lie point symmetry      Noether conserved quantity     
Received:  30 November 2011      Published:  01 June 2012
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.20.Qs (General properties, structure, and representation of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Outstanding Young Scientist Fund of China (Grant No. 10725209), the National Natural Science Foundation of China (Grant Nos. 90816001 and 11102060), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20093108110005), the Shanghai Subject Chief Scientist Project, China (Grant No. 09XD1401700), and the Shanghai Leading Academic Discipline Project, China (Grant No. S30106).
Corresponding Authors:  Chen Li-Qun     E-mail:

Cite this article: 

Xia Li-Li, Chen Li-Qun Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices 2012 Chin. Phys. B 21 070202

[1] Noether A E 1918 Math. Phys. 2 235
[2] Bahar L Y and Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125
[3] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[4] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[5] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[6] Luo S K, Zhang Y F, et al. 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)
[7] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology) (in Chinese)
[8] Cai J L 2008 Chin. Phys. Lett. 25 1523
[9] Xia L L and Cai J L 2010 Chin. Phys. B 19 040302
[10] Xia L L 2011 Chin. Phys. Lett. 28 040201
[11] Dorodnitsyn V 2011 Applications of Lie Groups to Difference Equations (Boca Raton: Chapman & Hall/CRC)
[12] Cadzow J A 1970 Int. J. Control. 11 393
[13] Logan J D 1973 Aequat. Math. 9 210
[14] Lee T D 1983 Phys. Lett. B 122 217
[15] Levi D, Tremblay S and Winternitz P 2001 Czech. J. Phys. 51 349
[16] Levi D and Winternitz P 1991 Phys. Lett. A 352 335
[17] Levi D and Winternitz P 1996 J. Math. Phys. 37 5551
[18] Dorodnitsyn V 1994 Int. J. Mod. Phys. C (Phys. Comp.) 5 723
[19] Dorodnitsyn V 2000 Group Properties of Difference Equations (Moscow: Max Press) (in Russian)
[20] Levi D, Tremblay S and Winternitz P 2001 J. Phys. A: Math. Gen. 34 9507
[21] Budd C and Dorodnitsyn V 2001 J. Phys. A: Math Gen. 34 10387
[22] Dorodnitsyn V 2001 Appl. Num. Math. 39 307
[23] Shi S Y, Fu J L and Chen L Q 2008 Chin. Phys. B 17 385
[24] Fu J L, Dai G D, Jim閚ez S and Tang Y F 2007 Chin. Phys. 16 570
[25] Dorodnitsyn V and Kozlov R 2010 J. Eng. Math. 66 253
[26] Chen J B, Guo H Y and Wu K 2003 J. Math. Phys. 44 1688
[27] Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 1063
[28] Wang X Z, Fu J L and Li C R 2012 Appl. Mech. Mater. 117--119 167
[29] Lie S 1888 Math. Ann. 32 213
[30] Maeda S 1980 Math. Japan 25 405
[31] Levi D and Winternitz P 1991 Phys. Lett. A 152 335
[32] Dorodnitsyn V 1991 J. Sov. Math. 55 1490
[33] Shi S Y, Huang X H, Zhang X B and Jin L 2009 Acta Phys. Sin. 58 3625 (in Chinese)
[34] Fu J L, Chen L Q and Chen B Y 2009 Sci. China 39 1320 (in Chinese)
[35] Fu J L and Chen L Q 2003 Phys. Lett. A 317 225
[36] Fu J L, Fu H and Liu R W 2010 Phys. Lett. A 374 1812
[37] Fu J L, Chen B Y and Chen L Q 2010 Phys. Lett. A 373 409
[38] Dorodnitsyn V 2001 The Group Properties of Difference Equations (Moscow: Fizmatlit) (in Russian)
[1] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[2] Multiple Darboux-Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach
Shuai-Jun Liu(刘帅君), Xiao-Yan Tang(唐晓艳), Sen-Yue Lou(楼森岳). Chin. Phys. B, 2018, 27(6): 060201.
[3] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[4] A symmetry-preserving difference scheme for high dimensional nonlinear evolution equations
Xin Xiang-Peng, Chen Yong, Wang Yun-Hu. Chin. Phys. B, 2013, 22(6): 060201.
[5] Noether conserved quantities and Lie point symmetries of difference Lagrange--Maxwell equations and lattices
Fu Jing-Li, Nie Ning-Ming, Huang Jian-Fei, Jimé nez Salvador, Tang Yi-Fa, Vá zquez Luis, Zhao Wei-Jia. Chin. Phys. B, 2009, 18(7): 2634-2641.
[6] The Lie symmetries and Noether conserved quantities of discrete mechanical systems with variable mass
Shi Shen-Yang, Fu Jing-Li, Zhang Xiao-Bo, Huang Xiao-Hong, Chen Li-Qun. Chin. Phys. B, 2008, 17(3): 754-758.
[7] Lie point symmetry algebras and finite transformation groups of the general Broer--Kaup system
Jia Man. Chin. Phys. B, 2007, 16(6): 1534-1544.
[8] New non-Noether conserved quantities of mechanical system in phase space
Yan Xiang-Hong, Fang Jian-Hui. Chin. Phys. B, 2006, 15(10): 2197-2201.
[9] Finite symmetry transformation groups and exact solutions of Lax integrable systems
Lou Sen-Yue, Ma Hong-Cai. Chin. Phys. B, 2005, 14(8): 1495-1500.
[10] Filtering for linear systems with noise correlation and its application to singular systems
Wu Jian-Rong, Song Shi-Ji. Chin. Phys. B, 2004, 13(12): 1977-1981.
[11] Non-Noether conserved quantity constructed by using form invariance for Birkhoffian system
Mei Feng-Xiang, Qin Mao-Chang, Xu Xue-Jun. Chin. Phys. B, 2004, 13(12): 1999-2002.
[12] A new type of Lie symmetrical non-Noether conserved quantity for nonholonomic systems
Huang Fei-Jiang, Lu Yi-Bing, Luo Shao-Kai. Chin. Phys. B, 2004, 13(12): 2182-2186.
[13] Non-Noether symmetries and conserved quantities of the Lagrange mechano-electrical systems
Fu Jing-Li, Chen Li-Qun, Liu Rong-Wan. Chin. Phys. B, 2004, 13(11): 1784-1789.
[14] Non-Noether symmetrical conserved quantity for nonholonomic Vacco dynamical systems with variable mass
Qian Yong-Fen, Li Ren-Jie, Zhao Shu-Hong. Chin. Phys. B, 2004, 13(11): 1790-1795.
[15] Lie symmetries and non-Noether conserved quantities for Hamiltonian canonical equations
Fu Jing-Li, Chen Li-Qun, Xie Feng-Ping. Chin. Phys. B, 2004, 13(10): 1611-1614.
No Suggested Reading articles found!