Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 060504    DOI: 10.1088/1674-1056/21/6/060504
GENERAL Prev   Next  

Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal

Giuseppe Grassi
Dipartimento Ingegneria Innovazione Università del Salento - 73100 Lecce-Italy
Abstract  In this paper we present a new projective synchronization scheme, where two chaotic (hyperchaotic) discrete-time systems synchronize for any arbitrary scaling matrix. Specifically, each drive system state synchronizes with a linear combination of response system states. The proposed observer-based approach presents some useful features: i) it enables {exact} synchronization to be achieved in finite time (i.e., {dead-beat} synchronization); ii) it exploits a {scalar} synchronizing signal; iii) it can be applied to a {wide} class of discrete-time chaotic (hyperchaotic) systems; iv) it includes, as a particular case, most of the synchronization types defined so far. An example is reported, which shows in detail that exact synchronization is effectively achieved in finite time, using a scalar synchronizing signal only, for any arbitrary scaling matrix.
Keywords:  chaos synchronization      full-state hybrid projective synchronization      observer-based synchronization      chaotic discrete-time systems      dead beat control      attractor scaling     
Received:  06 September 2011      Published:  01 May 2012
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  Giuseppe Grassi     E-mail:  giuseppe.grassi@unisalento.it

Cite this article: 

Giuseppe Grassi Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal 2012 Chin. Phys. B 21 060504

[1] Chen G and Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World Scientific)
[2] Chen G and Ueta T (eds) 2002 Chaos in Circuits and Systems (Singapore: World Scientific)
[3] Grassi G 2008 Chin. Phys. B 17 3247
[4] Carroll T L and Pecora L M 1991 IEEE Trans. Circ. Sys. 38 453
[5] Mascolo S and Grassi G 1997 Phys. Rev. E 56 6166
[6] Wei W, Li D H and Wang J 2010 Chin. Phys. B 19 040507
[7] Brucoli M, Carnimeo L and Grassi G 1996 Int. J. Bifur. Chaos 6 1673
[8] Grassi G and Mascolo S 1997 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 44 1011
[9] Grassi G and Mascolo S 1998 IEE Electron. Lett. 34 424
[10] Grassi G and Mascolo S 1999 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 46 1135
[11] Grassi G and Mascolo S 1999 IEEE Trans. Circ. Sys. II: Analog and Digital Signal Proc. 46 478
[12] Miller D A and Grassi G 2001 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 48 366
[13] Grassi G and Miller D A 2002 IEEE Trans. Circ. Sys. I: Fund. Theor. Appl. 49 373
[14] An H L and Chen Y 2008 Chin. Phys. B 17 98
[15] Zhang R and Xu Z Y 2010 Chin. Phys. B 19 120511
[16] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[17] Chee C Y and Xu D 2003 Phys. Lett. A 318 112
[18] Xu D 2001 Phys. Rev. E 63 027201
[19] Xu D and Chee C Y 2002 Phys. Rev. E 66 046218
[20] Grassi G and Miller D A 2009 Chaos, Solitons & Fractals 39 1246
[21] Grassi G and Miller D A 2007 Int. J. Bifur. Chaos 17 1337
[22] Niu Y J, Wang X Y, Nian F Z and Wang M J 2010 Chin. Phys. B 19 120507
[23] Hu M, Xu Z, Zhang R and Hu A 2007 Phys. Lett. A 365 315
[24] Lu J and Zhang Q 2008 Phys. Lett. A 372 1416
[25] Hu M, Xu Z, Zhang R and Hu A 2007 Phys. Lett. A 361 231
[26] Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simul. 13 456
[27] Hu M, Xu Z and Zhang R 2008 Commun. Nonlinear Sci. Numer. Simul. 13 782
[28] Dai H, Jia L X, Hui M and Si G Q 2011 Chin. Phys. B 20 040507
[29] Grassi G 2010 J. Franklin Institute 347 438
[30] Elhadj Z and Sprott J C 2009 Int. J. Bifur. Chaos 19 1023
[31] Dorf R C and Bishop R H 2005 Modern Control Systems (Prentice Hall, Upper Saddle River: NJ)
[32] Chua L O, Komuro M and Matsumoto T 1986 IEEE Trans. Circ. Sys. 33 1073
[1] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[2] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng, Li Sheng-Gang, Sun Ye-Guo, Wang Hong-Xing. Chin. Phys. B, 2015, 24(9): 090505.
[3] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying, Feng Xiu-Qin, Yao Zhi-Hai, Jia Hong-Yang. Chin. Phys. B, 2015, 24(11): 110503.
[4] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming, Tang Yong-Guang, Chai Yong-Quan, Wu Feng. Chin. Phys. B, 2014, 23(10): 100501.
[5] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang, Liu Chong-Xin, Liu Kai, Liu Ling. Chin. Phys. B, 2014, 23(10): 100504.
[6] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[7] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang, Chen Li-Qun. Chin. Phys. B, 2013, 22(10): 100506.
[8] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G. Chin. Phys. B, 2012, 21(5): 050505.
[9] Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems
Mohammad Pourmahmood Aghababa. Chin. Phys. B, 2012, 21(3): 030502.
[10] Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control
Lü Ling, Yu Miao, Wei Lin-Ling, Wei Lin-Ling, Li Yu-Shan. Chin. Phys. B, 2012, 21(10): 100507.
[11] A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system
Si Gang-Quan, Sun Zhi-Yong, Zhang Yan-Bin. Chin. Phys. B, 2011, 20(8): 080505.
[12] A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization
Mahdi Pourgholi, Vahid Johari Majd. Chin. Phys. B, 2011, 20(12): 120503.
[13] Generalized chaos synchronization of a weighted complex network with different nodes
Lü Ling, Li Gang, Guo Li, Meng Le, Zou Jia-Rui, Yang Ming. Chin. Phys. B, 2010, 19(8): 080507.
[14] Asymptotical p-moment stability of stochastic impulsive differential system and its application to chaos synchronization
Niu Yu-Jun, Xu Wei, Lu Zhao-Yang. Chin. Phys. B, 2010, 19(3): 030512.
[15] Impulsive synchronization and control of directed transport in chaotic ratchets
Guo Liu-Xiao, Hu Man-Feng, Xu Zhen-Yuan. Chin. Phys. B, 2010, 19(2): 020512.
No Suggested Reading articles found!