Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020304    DOI: 10.1088/1674-1056/21/2/020304
GENERAL Prev   Next  

Encoding entanglement-assisted quantum stabilizer codes

Wang Yun-Jiang(王云江)a)†, Bai Bao-Ming(白宝明) a), Li Zhuo(李卓)a), Peng Jin-Ye(彭进业)b)c), and Xiao He-Ling(肖鹤玲)a)
a. State Key Laboratory of ISN, Department of Telecommunications Engineering, Xidian University, Xi'an 710071, China;
b. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710069, China;
c. The Key Laboratory of AIPPC of Ministry of Education, Northwestern Polytechnical University, Xi'an 710069, China
Abstract  We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.
Keywords:  quantum error correction      entanglement-assisted quantum stabilizer codes      encoding complexity  
Received:  21 April 2010      Revised:  20 April 2011      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB328300), the National Natural Science Foundation of China (Grant Nos. 60972046 and 60902030), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0852), the Natural Science Foundation of Shaanxi Province (Grant No. 2010JQ8025), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100203120004), the 111 Program (Grant No. B08038), and the China Scholarship Council (Grant No. [2008]3019).
Corresponding Authors:  Wang Yun-Jiang,yunjiang.w@gmail.com     E-mail:  yunjiang.w@gmail.com

Cite this article: 

Wang Yun-Jiang(王云江), Bai Bao-Ming(白宝明), Li Zhuo(李卓), Peng Jin-Ye(彭进业), and Xiao He-Ling(肖鹤玲) Encoding entanglement-assisted quantum stabilizer codes 2012 Chin. Phys. B 21 020304

[1] Liu W J, Chen H W, Ma T H, Li Z Q, Liu Z H and Hu W B 2009 Chin. Phys. B 18 4105
[2] Zhang S, Wang J, Zhang Q and Tang C J 2009 Acta Phys. Sin. 57 73 (in Chinese)
[3] Chen P, Deng F G and Long G L 2006 Chin. Phys. bf 15 2228
[4] Wang Y J, Bai B M and Wang X M 2010 Acta Phys. Sin. 59 7591 (in Chinese)
[5] Wang Y J, Bai B M, Peng J Y and Wang X M 2011 Acta Phys. Sin. 60 030306 (in Chinese)
[6] Gottesman D 1997 Stabilizer Codes and Quantum Error Correction (Ph. D. thesis) (Los Angeles: Caltech)
[7] Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[8] Steane A M 1996 Phys. Rev. Lett. 77 793
[9] Wen K and Long G L 2010 Int. J. Quantum Inform. 18 697
[10] Li Y, Zeng G H and Moon H L 2009 Chin. Phys. B bf18 4154
[11] Li Z and Xing L J 2008 Chin. Phys. B 17 28
[12] Calderbank A R, Rains E M, Shor P W and Sloane N J A 1998 IEEE Trans. Inform. Theory 47 1369
[13] MacKay D J C, Mitchison G J and McFadden P L 2004 IEEE Trans. Inform. Theory 50 2315
[14] Brun T, Devetak I and Hsieh M H 2006 Science 314 436
[15] Hsieh M H, Brun T and Devetak I 2009 Phys. Rev. A 79 032304
[16] Wang Y J, Bai B M, Zhao W B and Wang X M 2009 Int. J. Quantum Inform. 7 1373
[17] Wang Y J, Sanders B C, Bai B M and Wang X M 2009 arXiv/: 0912.4546 [quant-ph]
[18] Gottesman D 2007 http://www.perimeterinstitute.ca /personal/dgottesman/QECC2007
[2007]
[19] Fattal D, Cubitt T S, Yamamoto Y, Bravyi S and Chuang I L 2004 arXiv//: 0406168 [quant-ph]
[20] Cao H X, Li L, Chen Z L, Zhang Y and Guo Z H 2010 Chin. Sci. Bull. 55 2122
[20] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 459-462
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[3] Determination of quantum toric error correction code threshold using convolutional neural network decoders
Hao-Wen Wang(王浩文), Yun-Jia Xue(薛韵佳), Yu-Lin Ma(马玉林), Nan Hua(华南), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010303.
[4] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[5] Jointly-check iterative decoding algorithm for quantum sparse graph codes
Shao Jun-Hu(邵军虎), Bai Bao-Ming(白宝明), Lin Wei(林伟), and Zhou Lin(周林). Chin. Phys. B, 2010, 19(8): 080307.
[6] Secure deterministic communication in a quantum loss channel using quantum error correction code
Wu Shuang(吴双), Liang Lin-Mei(梁林梅), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2007, 16(5): 1229-1232.
No Suggested Reading articles found!